Search results for: CVFEM- radiation coupled with convection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3125

Search results for: CVFEM- radiation coupled with convection

5 Geological, Geochronological, Geochemical, and Geophysical Characteristics of the Dalli Porphyry Cu-Au Deposit in Central Iran; Implications for Exploration

Authors: Hooshag Asadi Haroni, Maryam Veiskarami, Yongjun Lu

Abstract:

The Dalli gold-rich porphyry deposit (17 Mt @ 0.5% Cu and 0.65 g/t Au) is located in the Urumieh-Dokhtar Magmatic Arc (UDMA), a small segment of the Tethyan metallogenic belt, hosting several porphyry Cu (Mo-Au) systems in Iran. This research characterizes the Dalli deposit to define exploration criteria in advanced exploration such as the drilling of possible blind porphyry centers. Geological map, trench/drill hole geochemical and ground magnetic data, and age dating and isotope trace element analyses, carried out at the John De Laeter Research Center of Curtin University, were used to characterize the Delli deposit. Mineralization at Dalli is hosted by NE-trending quartz-diorite porphyry stocks (~ 200m in diameter) intruded by a wall-rock andesite porphyry. Disseminated and stockwork Cu-Au mineralization is related to potassic alteration, comprising magnetite, late K-feldspar and biotite, and quartz-sericite-specularite overprint, surrounded by extensive barren argillic and propylitic alterations. In the peripheries of the porphyry centers, there are N-trending vuggy quartz veins, hosting epithermal Au-Ag-As-Sb mineralization. Geochemical analyses of drill core samples showed that the core of the porphyry stocks is low-grade, whereas the high-grade disseminated and stockwork mineralization (~ 1% Cu and ~ 1.2 g/t Au) occurred at the contact of the porphyry stocks and andesite porphyry. Geochemical studies of the drill hole and trench samples showed a strong correlation between Cu and Au and both show a second-order correlation with Fe and As. Magnetic survey revealed two significant magnetic anomalies, associated with intensive potassic alteration, in the reduced-to-the-pole magnetic map of the area. A relatively weaker magnetic anomaly, showing no surface porphyry expressions, is located on a lithocap, consisting of advanced argillic alteration, vuggy quartz veins, and surface expressions of epithermal geochemical signatures. The association of the lithocap and the weak magnetic anomaly could be indicative of a hidden mineralized porphyry center. Litho-geochemical analyses of the least altered Dalli intrusions and volcanic rocks indicated high Sr/Y (49-61) and Eu/Eu* (0.89-0.92), features typical of Cu porphyries. The U-Pb dating of zircons of the mineralized quartz diorite and andesite porphyry, carried out by laser ablation inductively coupled plasma mass spectrometry, yielded magmatic crystallization ages of 15.4-16.0 Ma (Middle Miocene). The zircon trace element concentrations of Dalli are characterized by high Eu/Eu* (0.3-0.8), (Ce/Nd)/Y (0.01-0.3), and 10000*(Eu/Eu*)/Y (2-15) ratios, similar to fertile porphyry suites such as the giant Sar-Cheshmeh and Qulong porphyry Cu deposits along the Tethyan belt. This suggests that the Middle Miocene Dalli intrusions are fertile and require extensive deep drillings to define their potential. Chondrite-normalized rare earth element (REE) patterns show no significant Eu anomalies, and are characterized by light-REE enrichments (La/Sm)n = 2.57–6.40). In normalized multi-element diagrams, analyzed rocks are characterized by enrichments in large ion lithophile elements (LILE) and depletions in high field strength elements (HFSE), and display typical features of subduction-related calc-alkaline magmas. The characteristics of the Dalli deposit provided several recognition criteria for detailed exploration of Cu-Au porphyry deposits and highlighted the importance of the UDMA as a potentially significant, economically important, but relatively underexplored porphyry province.

Keywords: porphyry, gold, geochronology, magnetic, exploration

Procedia PDF Downloads 46
4 Climate Change Threats to UNESCO-Designated World Heritage Sites: Empirical Evidence from Konso Cultural Landscape, Ethiopia

Authors: Yimer Mohammed Assen, Abiyot Legesse Kura, Engida Esyas Dube, Asebe Regassa Debelo, Girma Kelboro Mensuro, Lete Bekele Gure

Abstract:

Climate change has posed severe threats to many cultural landscapes of UNESCO world heritage sites recently. The UNESCO State of Conservation (SOC) reports categorized flooding, temperature increment, and drought as threats to cultural landscapes. This study aimed to examine variations and trends of rainfall and temperature extreme events and their threats to the UNESCO-designated Konso Cultural Landscape in southern Ethiopia. The study used dense merged satellite-gauge station rainfall data (1981-2020) with spatial resolution of 4km by 4km and observed maximum and minimum temperature data (1987-2020). Qualitative data were also gathered from cultural leaders, local administrators, and religious leaders using structured interview checklists. The spatial patterns, coefficient of variation, standardized anomalies, trends, and magnitude of change of rainfall and temperature extreme events both at annual and seasonal levels were computed using the Mann-Kendall trend test and Sen’s slope estimator under the CDT package. The standard precipitation index (SPI) was also used to calculate drought severity, frequency, and trend maps. The data gathered from key informant interviews and focus group discussions were coded and analyzed thematically to complement statistical findings. Thematic areas that explain the impacts of extreme events on the cultural landscape were chosen for coding. The thematic analysis was conducted using Nvivo software. The findings revealed that rainfall was highly variable and unpredictable, resulting in extreme drought and flood. There were significant (P<0.05) increasing trends of heavy rainfall (R10mm and R20mm) and the total amount of rain on wet days (PRCPTOT), which might have resulted in flooding. The study also confirmed that absolute temperature extreme indices (TXx, TXn, and TNx) and the percentile-based temperature extreme indices (TX90p, TN90p, TX10p, and TN10P) showed significant (P<0.05) increasing trends which are signals for warming of the study area. The results revealed that the frequency as well as the severity of drought at 3-months (katana/hageya seasons) was more pronounced than the 12-months (annual) time scale. The highest number of droughts in 100 years is projected at a 3-months timescale across the study area. The findings also showed that frequent drought has led to loss of grasses which are used for making traditional individual houses and multipurpose communal houses (pafta), food insecurity, migration, loss of biodiversity, and commodification of stones from terrace. On the other hand, the increasing trends of rainfall extreme indices resulted in destruction of terraces, soil erosion, loss of life and damage of properties. The study shows that a persistent decline in farmland productivity, due to erratic and extreme rainfall and frequent drought occurrences, forced the local people to participate in non-farm activities and retreat from daily preservation and management of their landscape. Overall, the increasing rainfall and temperature extremes coupled with prevalence of drought are thought to have an impact on the sustainability of cultural landscape through disrupting the ecosystem services and livelihood of the community. Therefore, more localized adaptation and mitigation strategies to the changing climate are needed to maintain the sustainability of Konso cultural landscapes as a global cultural treasure and to strengthen the resilience of smallholder farmers.

Keywords: adaptation, cultural landscape, drought, extremes indices

Procedia PDF Downloads 13
3 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs

Abstract:

Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.

Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC

Procedia PDF Downloads 351
2 An Integrated Multisensor/Modeling Approach Addressing Climate Related Extreme Events

Authors: H. M. El-Askary, S. A. Abd El-Mawla, M. Allali, M. M. El-Hattab, M. El-Raey, A. M. Farahat, M. Kafatos, S. Nickovic, S. K. Park, A. K. Prasad, C. Rakovski, W. Sprigg, D. Struppa, A. Vukovic

Abstract:

A clear distinction between weather and climate is a necessity because while they are closely related, there are still important differences. Climate change is identified when we compute the statistics of the observed changes in weather over space and time. In this work we will show how the changing climate contribute to the frequency, magnitude and extent of different extreme events using a multi sensor approach with some synergistic modeling activities. We are exploring satellite observations of dust over North Africa, Gulf Region and the Indo Gangetic basin as well as dust versus anthropogenic pollution events over the Delta region in Egypt and Seoul through remote sensing and utilize the behavior of the dust and haze on the aerosol optical properties. Dust impact on the retreat of the glaciers in the Himalayas is also presented. In this study we also focus on the identification and monitoring of a massive dust plume that blew off the western coast of Africa towards the Atlantic on October 8th, 2012 right before the development of Hurricane Sandy. There is evidence that dust aerosols played a non-trivial role in the cyclogenesis process of Sandy. Moreover, a special dust event "An American Haboob" in Arizona is discussed as it was predicted hours in advance because of the great improvement we have in numerical, land–atmosphere modeling, computing power and remote sensing of dust events. Therefore we performed a full numerical simulation to that event using the coupled atmospheric-dust model NMME–DREAM after generating a mask of the potentially dust productive regions using land cover and vegetation data obtained from satellites. Climate change also contributes to the deterioration of different marine habitats. In that regard we are also presenting some work dealing with change detection analysis of Marine Habitats over the city of Hurghada, Red Sea, Egypt. The motivation for this work came from the fact that coral reefs at Hurghada have undergone significant decline. They are damaged, displaced, polluted, stepped on, and blasted off, in addition to the effects of climate change on the reefs. One of the most pressing issues affecting reef health is mass coral bleaching that result from an interaction between human activities and climatic changes. Over another location, namely California, we have observed that it exhibits highly-variable amounts of precipitation across many timescales, from the hourly to the climate timescale. Frequently, heavy precipitation occurs, causing damage to property and life (floods, landslides, etc.). These extreme events, variability, and the lack of good, medium to long-range predictability of precipitation are already a challenge to those who manage wetlands, coastal infrastructure, agriculture and fresh water supply. Adding on to the current challenges for long-range planning is climate change issue. It is known that La Niña and El Niño affect precipitation patterns, which in turn are entwined with global climate patterns. We have studied ENSO impact on precipitation variability over different climate divisions in California. On the other hand the Nile Delta has experienced lately an increase in the underground water table as well as water logging, bogging and soil salinization. Those impacts would pose a major threat to the Delta region inheritance and existing communities. There has been an undergoing effort to address those vulnerabilities by looking into many adaptation strategies.

Keywords: remote sensing, modeling, long range transport, dust storms, North Africa, Gulf Region, India, California, climate extremes, sea level rise, coral reefs

Procedia PDF Downloads 471
1 Recent Trends in Transportable First Response Healthcare Architecture

Authors: Stephen Verderber

Abstract:

The World Health Organization (WHO) calls for research and development on ecologically sustainable, resilient structures capable of effectively responding to disaster events globally, in response to climate change, politically based diasporas, earthquakes, and other adverse events upending the rhythms of everyday life globally. By 2050, nearly 80% of the world’s population will reside in coastal zones, and this, coupled with the increasingly dire impacts of climate change, constitute a recipe for further chaos and disruption, and in light of these events, architects have yet to rise up to meet the challenge. In the arena of healthcare, rapidly deployable clinics and field hospitals can provide immediate assistance in medically underserved disaster strike zones. Transportable facilities offer multiple advantages over conventional, fixed-site hospitals, as lightweight, comparatively unencumbered alternatives. These attributes have been proven repeatedly in 20th century vehicular and tent-based structures deployed in frontline combat theaters and in prior natural disasters. Prefab transportable clinics and trauma centers recently responded adroitly to medical emergencies in the aftermath of the Haitian (2010) and Ecuadorian (2016) earthquakes, and in North American post-hurricane relief efforts (2017) while architects continue to be castigated by their engineer colleagues as chronically poor first responders. Architecturally based portable structures for healthcare currently include Redeployable Health Centers (RHCs), Redeployable Trauma Centers (RTCs), and Permanent Modular Installations (PMIs). Five tectonic variants within this typology have recently been operationalized in the field: 1. Vehicular-based Nomadics: Prefab modules installed on a truck chassis with interior compartments dropped in prior to final assembly. Alternately, a two-component apparatus is preferred, with a truck cab pulling a modular medical unit, with independent transiting component; 2. Tent and Pneumatic Systems: Tent/yurt precursors and inflatable systems lightweight and responsive to topographically challenging terrain and diverse climates; 3. Containerized Systems: The standard modular intermodal-shipping container affords structural strength, resiliency in difficult transiting conditions, and can be densely close-packed and these can be custom-built or hold flat-pack systems; 4. Flat-Packs and Pop-Up Systems: These kit-of-part assemblies are shipped in standardized or specially-designed ISO containers; and 5. Hybrid Systems: These consist of composite facilities representing a synthesis of mobile vehicular components and/or tent or shipping containers, fused with conventional or pneumatically activated tent systems. Hybrids are advantageous in many installation contexts from an aesthetic, fabrication, and transiting perspective. Advantages/disadvantages of various modular systems are comparatively examined, followed by presentation of a compendium of 80 evidence (research)-based planning and design considerations addressing site/context, transiting and commissioning, triage, decontamination/intake, diagnostic and treatment, facility tectonics, and administration/total environment. The benefits of offsite pre-manufactured fabrication are examined, as is anticipated growth in international demand for transportable healthcare facilities to meet the challenges posed by accelerating global climate change and global conflicts. This investigation into rapid response facilities for pre and post-disaster zones is drawn from a recent book by the author, the first on architecture on this topic (Innovations in Transportable Healthcare Architecture).

Keywords: disaster mitigation, rapid response healthcare architecture, offsite prefabrication

Procedia PDF Downloads 109