Search results for: software fault prediction
4311 Condensation of Moist Air in Heat Exchanger Using CFD
Authors: Jan Barak, Karel Frana, Joerg Stiller
Abstract:
This work presents results of moist air condensation in heat exchanger. It describes theoretical knowledge and definition of moist air. Model with geometry of square canal was created for better understanding and post processing of condensation phenomena. Different approaches were examined on this model to find suitable software and model. Obtained knowledge was applied to geometry of real heat exchanger and results from experiment were compared with numerical results. One of the goals is to solve this issue without creating any user defined function in the applied code. It also contains summary of knowledge and outlook for future work.Keywords: condensation, exchanger, experiment, validation
Procedia PDF Downloads 4064310 Text2Time: Transformer-Based Article Time Period Prediction
Authors: Karthick Prasad Gunasekaran, B. Chase Babrich, Saurabh Shirodkar, Hee Hwang
Abstract:
Construction preparation is crucial for the success of a construction project. By involving project participants early in the construction phase, project managers can plan ahead and resolve issues early, resulting in project success and satisfaction. This study uses quantitative data from construction management projects to determine the relationship between the pre-construction phase, construction schedule, and customer satisfaction. This study examined a total of 65 construction projects and 93 clients per job to (a) identify the relationship between the pre-construction phase and program reduction and (b) the pre-construction phase and customer retention. Based on a quantitative analysis, this study found a negative correlation between pre-construction status and project schedule in 65 construction projects. This finding means that the more preparatory work done on a particular project, the shorter the total construction time. The Net Promoter Score of 93 clients from 65 projects was then used to determine the relationship between construction preparation and client satisfaction. The pre-construction status and the projects were further analyzed, and a positive correlation between them was found. This shows that customers are happier with projects with a higher ready-to-build ratio than projects with less ready-to-build.Keywords: NLP, BERT, LLM, deep learning, classification
Procedia PDF Downloads 1084309 Young’s Modulus Variability: Influence on Masonry Vault Behavior
Authors: Abdelmounaim Zanaz, Sylvie Yotte, Fazia Fouchal, Alaa Chateauneuf
Abstract:
This paper presents a methodology for probabilistic assessment of bearing capacity and prediction of failure mechanism of masonry vaults at the ultimate state with consideration of the natural variability of Young’s modulus of stones. First, the computation model is explained. The failure mode is the most reported mode, i.e. the four-hinge mechanism. Based on this assumption, the study of a vault composed of 16 segments is presented. The Young’s modulus of the segments is considered as random variable defined by a mean value and a coefficient of variation CV. A relationship linking the vault bearing capacity to the modulus variation of voussoirs is proposed. The failure mechanisms, in addition to that observed in the deterministic case, are identified for each CV value as well as their probability of occurrence. The results show that the mechanism observed in the deterministic case has decreasing probability of occurrence in terms of CV, while the number of other mechanisms and their probability of occurrence increase with the coefficient of variation of Young’s modulus. This means that if a significant change in the Young modulus of the segments is proven, taken it into account in computations becomes mandatory, both for determining the vault bearing capacity and for predicting its failure mechanism.Keywords: masonry, mechanism, probability, variability, vault
Procedia PDF Downloads 4464308 Mineralogy and Fluid Inclusion Study of the Kebbouch South Pb-Zn Deposit, Northwest Tunisia
Authors: Imen Salhi, Salah Bouhlel, Bernrd Lehmann
Abstract:
The Kebbouch South Pb-Zn deposit is located 20 km to the east of El Kef (NW) in the southeastern part of the Triassic diapir belt in the Tunisian Atlas. The deposit is composed of sulfide and non-sulfide zinc-lead ore bodies. The aim of this study is to provide petrographic results, mineralogy, as well as fluid inclusion data of the carbonate-hosted Pb-Zn Kebbouch South deposit. Mineralization forms two major ore types: (1) lenticular dolostones and clay breccias in the contact zone between Triassic and Upper Cretaceous strata;, it consists of small-scale lenticular, strata-or fault-controlled mineralization mainly composed of marcasite, galena, sphalerite, pyrite, and (2) stratiform mineralization in the Bahloul Formation (Upper Cenomanian-Lower Turonian) consisting of framboidal and cubic pyrite, disseminated sphalerite and galena. Non-metalliferous and/or gangue minerals are represented by dolomite, calcite, celestite and quartz. Fluid inclusion petrography study has been carried out on calcite and celestite. Fluid inclusions hosted in celestite are less than 20 µm large and show two types of aqueous inclusions: monophase liquid aqueous inclusions (L), abundant and very small, generally less than 15 µm and liquid-rich two phase inclusions (L+V). The gas phase forms a mobile vapor bubble. Microthermometric analyses of (L+V) fluid inclusions for celestite indicate that the homogenization temperature ranges from 121 to 156°C, and final ice melting temperatures are in the range of – 19 to -9°C corresponding to salinities of 12 to 21 wt% NaCl eq. (L+V) fluid inclusions from calcite are frequently localized along the growth zones; their homogenization temperature ranges from 96 to 164°C with final ice melting temperatures between -16 and -7°C corresponding to salinities of 9 to 19 wt% NaCl eq. According to mineralogical and fluid inclusion studies, mineralization in the Pb – Zn Kebbouch South deposit formed between 96 to 164°C with salinities ranging from 9 to 21 wt% NaCl eq. A contribution of basinal brines in the ore formation of the kebbouch South Pb–Zn deposit is likely. The deposit is part of the family of MVT deposits associated with the salt diapir environment.Keywords: fluid inclusion, Kebbouch South, mineralogy, MVT deposits, Pb-Zn
Procedia PDF Downloads 2564307 CO₂ Capture by Membrane Applied to Steel Production Process
Authors: Alexandra-Veronica Luca, Letitia Petrescu
Abstract:
Steel production is a major contributor to global warming potential. An average value of 1.83 tons of CO₂ is emitted for every ton of steel produced, resulting in over 3.3 Mt of CO₂ emissions each year. The present paper is focused on the investigation and comparison of two O₂ separation methods and two CO₂ capture technologies applicable to iron and steel industry. The O₂ used in steel production comes from an Air Separation Unit (ASU) using distillation or from air separation using membranes. The CO₂ capture technologies are represented by a two-stage membrane separation process and the gas-liquid absorption using methyl di-ethanol amine (MDEA). Process modelling and simulation tools, as well as environmental tools, are used in the present study. The production capacity of the steel mill is 4,000,000 tones/year. In order to compare the two CO₂ capture technologies in terms of efficiency, performance, and sustainability, the following cases have been investigated: Case 1: steel production using O₂ from ASU and no CO₂ capture; Case 2: steel production using O₂ from ASU and gas-liquid absorption for CO₂ capture; Case 3: steel production using O₂ from ASU and membranes for CO₂ capture; Case 4: steel production using O₂ from membrane separation method and gas-liquid absorption for CO₂ capture and Case-5: steel production using membranes for air separation and CO₂ capture. The O₂ separation rate obtained in the distillation technology was about 96%, and about 33% in the membrane technology. Similarly, the O₂ purity resulting in the conventional process (i.e. distillation) is higher compared to the O₂ purity obtained in the membrane unit (e.g., 99.50% vs. 73.66%). The air flow-rate required for membrane separation is about three times higher compared to the air flow-rate for cryogenic distillation (e.g., 549,096.93 kg/h vs. 189,743.82 kg/h). A CO₂ capture rate of 93.97% was obtained in the membrane case, while the CO₂ capture rate for the gas-liquid absorption was 89.97%. A quantity of 6,626.49 kg/h CO₂ with a purity of 95.45% is separated from the total 23,352.83 kg/h flue-gas in the membrane process, while with absorption of 6,173.94 kg/h CO₂ with a purity of 98.79% is obtained from 21,902.04 kg/h flue-gas and 156,041.80 kg/h MDEA is recycled. The simulation results, performed using ChemCAD process simulator software, lead to the conclusion that membrane-based technology can be a suitable alternative for CO₂ removal for steel production. An environmental evaluation using Life Cycle Assessment (LCA) methodology was also performed. Considering the electricity consumption, the performance, and environmental indicators, Case 3 can be considered the most effective. The environmental evaluation, performed using GaBi software, shows that membrane technology can lead to lower environmental emissions if membrane production is based on benzene derived from toluene hydrodealkilation and chlorine and sodium hydroxide are produced using mixed technologies.Keywords: CO₂ capture, gas-liquid absorption, Life Cycle Assessment, membrane separation, steel production
Procedia PDF Downloads 2974306 A Resource Survey of Lateritic Soils and Impact Evaluation toward Community Members Living Nearby the Excavation Pits
Authors: Ratchasak Suvannatsiri
Abstract:
The objectives of the research are to find the basic engineering properties of lateritic soil and to predict the impact on community members who live nearby the excavation pits in the area of Amphur Pak Thor, Ratchaburi Province in the western area of Thailand. The research was conducted by collecting soil samples from four excavation pits for basic engineering properties, testing and collecting questionnaire data from 120 community members who live nearby the excavation pits, and applying statistical analysis. The results found that the basic engineering properties of lateritic soil can be classified into silt soil type which is cohesionless as the loess or collapsible soil which is not suitable to be used for a pavement structure for commuting highway because it could lead to structural and functional failure in the long run. In terms of opinion from community members toward the impact, the highest impact was on the dust from excavation activities. The prediction from the logistic regression in terms of impact on community members was at 84.32 which can be adapted and applied onto other areas with the same context as a guideline for risk prevention and risk communication since it could impact the infrastructures and also impact the health of community members.Keywords: lateritic soil, excavation pits, engineering properties, impact on community members
Procedia PDF Downloads 4574305 Improved Structure and Performance by Shape Change of Foam Monitor
Authors: Tae Gwan Kim, Hyun Kyu Cho, Young Hoon Lee, Young Chul Park
Abstract:
Foam monitors are devices that are installed on cargo tank decks to suppress cargo area fires in oil tankers or hazardous chemical ship cargo ships. In general, the main design parameter of the foam monitor is the distance of the projection through the foam monitor. In this study, the relationship between flow characteristics and projection distance, depending on the shape was examined. Numerical techniques for fluid analysis of foam monitors have been developed for prediction. The flow pattern of the fluid varies depending on the shape of the flow path of the foam monitor, as the flow losses affecting projection distance were calculated through numerical analysis. The basic shape of the foam monitor was an L shape designed by N Company. The modified model increased the length of the flow path and used the S shape model. The calculation result shows that the L shape, which is the basic shape, has a problem that the force is directed to one side and the vibration and noise are generated there. In order to solve the problem, S-shaped model, which is a change model, was used. As a result, the problem is solved, and the projection distance from the nozzle is improved.Keywords: CFD, foam monitor, projection distance, moment
Procedia PDF Downloads 3464304 Investigation of Prospective Gold Ore Deposits in the Territory of Azerbaijan Committing Modern Geophysical Methods (As a Pattern of the Gillar Deposit in the Gadabey Region)
Authors: Parisa Zabolestani
Abstract:
This paper discusses the results of electric and gravimetric surveys carried out using modern geophysical methods, including new-generation equipment and advanced processing software, in the detailed study of the geological-tectonic structure of gold, silver, and copper deposits in the Gadabey region. The results of these surveys also involve the discovery and exploitation of ore areas located close to the deposit zone.Keywords: ore deposits, geophysical methods, electrical prospecting, gravimagnetic prospecting methods, volcanogenic-sedimentary rocks, ore masses, quartzized pophyrites, chloritized, epidotized, kaolinized
Procedia PDF Downloads 134303 Artificial Neural Network Based Approach for Estimation of Individual Vehicle Speed under Mixed Traffic Condition
Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh
Abstract:
Developing speed model is a challenging task particularly under mixed traffic condition where the traffic composition plays a significant role in determining vehicular speed. The present research has been conducted to model individual vehicular speed in the context of mixed traffic on an urban arterial. Traffic speed and volume data have been collected from three midblock arterial road sections in New Delhi. Using the field data, a volume based speed prediction model has been developed adopting the methodology of Artificial Neural Network (ANN). The model developed in this work is capable of estimating speed for individual vehicle category. Validation results show a great deal of agreement between the observed speeds and the predicted values by the model developed. Also, it has been observed that the ANN based model performs better compared to other existing models in terms of accuracy. Finally, the sensitivity analysis has been performed utilizing the model in order to examine the effects of traffic volume and its composition on individual speeds.Keywords: speed model, artificial neural network, arterial, mixed traffic
Procedia PDF Downloads 3914302 Numerical Calculation of Dynamic Response of Catamaran Vessels Based on 3D Green Function Method
Authors: Md. Moinul Islam, N. M. Golam Zakaria
Abstract:
Seakeeping analysis of catamaran vessels in the earlier stages of design has become an important issue as it dictates the seakeeping characteristics, and it ensures safe navigation during the voyage. In the present paper, a 3D numerical method for the seakeeping prediction of catamaran vessel is presented using the 3D Green Function method. Both steady and unsteady potential flow problem is dealt with here. Using 3D linearized potential theory, the dynamic wave loads and the subsequent response of the vessel is computed. For validation of the numerical procedure catamaran vessel composed of twin, Wigley form demi-hull is used. The results of the present calculation are compared with the available experimental data and also with other calculations. The numerical procedure is also carried out for NPL-based round bilge catamaran, and hydrodynamic coefficients along with heave and pitch motion responses are presented for various Froude number. The results obtained by the present numerical method are found to be in fairly good agreement with the available data. This can be used as a design tool for predicting the seakeeping behavior of catamaran ships in waves.Keywords: catamaran, hydrodynamic coefficients , motion response, 3D green function
Procedia PDF Downloads 2264301 Utilizing Topic Modelling for Assessing Mhealth App’s Risks to Users’ Health before and during the COVID-19 Pandemic
Authors: Pedro Augusto Da Silva E Souza Miranda, Niloofar Jalali, Shweta Mistry
Abstract:
BACKGROUND: Software developers utilize automated solutions to scrape users’ reviews to extract meaningful knowledge to identify problems (e.g., bugs, compatibility issues) and possible enhancements (e.g., users’ requests) to their solutions. However, most of these solutions do not consider the health risk aspects to users. Recent works have shed light on the importance of including health risk considerations in the development cycle of mHealth apps to prevent harm to its users. PROBLEM: The COVID-19 Pandemic in Canada (and World) is currently forcing physical distancing upon the general population. This new lifestyle made the usage of mHealth applications more essential than ever, with a projected market forecast of 332 billion dollars by 2025. However, this new insurgency in mHealth usage comes with possible risks to users’ health due to mHealth apps problems (e.g., wrong insulin dosage indication due to a UI error). OBJECTIVE: These works aim to raise awareness amongst mHealth developers of the importance of considering risks to users’ health within their development lifecycle. Moreover, this work also aims to help mHealth developers with a Proof-of-Concept (POC) solution to understand, process, and identify possible health risks to users of mHealth apps based on users’ reviews. METHODS: We conducted a mixed-method study design. We developed a crawler to mine the negative reviews from two samples of mHealth apps (my fitness, medisafe) from the Google Play store users. For each mHealth app, we performed the following steps: • The reviews are divided into two groups, before starting the COVID-19 (reviews’ submission date before 15 Feb 2019) and during the COVID-19 (reviews’ submission date starts from 16 Feb 2019 till Dec 2020). For each period, the Latent Dirichlet Allocation (LDA) topic model was used to identify the different clusters of reviews based on similar topics of review The topics before and during COVID-19 are compared, and the significant difference in frequency and severity of similar topics are identified. RESULTS: We successfully scraped, filtered, processed, and identified health-related topics in both qualitative and quantitative approaches. The results demonstrated the similarity between topics before and during the COVID-19.Keywords: natural language processing (NLP), topic modeling, mHealth, COVID-19, software engineering, telemedicine, health risks
Procedia PDF Downloads 1334300 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison
Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran
Abstract:
This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.Keywords: heat transfer, nanofluid, single-phase models, two-phase models
Procedia PDF Downloads 4874299 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine
Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi
Abstract:
To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine
Procedia PDF Downloads 1144298 Tribological Behavior of Warm Rolled Spray Formed Al-6Si-1Mg-1Graphite Composite
Authors: Surendra Kumar Chourasiya, Sandeep Kumar, Devendra Singh
Abstract:
In the present investigation tribological behavior of Al-6Si-1Mg-1Graphite composite has been explained. The composite was developed through the unique spray forming route in the spray forming chamber by using N₂ gas at 7kg/cm² and the flight distance was 400 mm. Spray formed composite having a certain amount of porosity which was reduced by the deformations. The composite was subjected to the warm rolling (WR) at 250ºC up to 40% reduction. Spray forming composite shows the considerable microstructure refinement, equiaxed grains, distribution of silicon and graphite particles in the primary matrix of the composite. Graphite (Gr) was incorporated externally during the process that works as a solid lubricant. Porosity decreased after reduction and hardness increases. Pin on disc test has been performed to analyze the wear behavior which is the function of sliding distance for all percent reduction of the composite. 30% WR composite shows the better result of wear rate and coefficient of friction. The improved wear properties of the composite containing Gr are discussed in light of the microstructural features of spray formed the composite and the nature of the debris particles. Scanning electron microscope and optical microscope analysis of the present material supported the prediction of aforementioned changes.Keywords: Al-6Si-1Mg-1Graphite, spray forming, warm rolling, wear
Procedia PDF Downloads 5694297 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data
Authors: M. Mueller, M. Kuehn, M. Voelker
Abstract:
In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing
Procedia PDF Downloads 1384296 Assessments of Internal Erosion in a Landfill Due to Changes in the Groundwater Level
Authors: Siamak Feizi, Gunvor Baardvik
Abstract:
Soil erosion has special consequences for landfills that are more serious than those found at conventional construction sites. Different potential heads between two sides of a landfill and the subsequent movement of water through pores within the soil body could trigger the soil erosion and construction instability. Such a condition was encountered in a landfill project in the southern part of Norway. To check the risk of internal erosion due to changes in the groundwater level (because of seasonal flooding in the river), a series of numerical simulations by means of Geo-Seep software was conducted. Output of this study provides a total picture of the landfill stability, possibilities of erosions, and necessary measures to prevent or reduce the risk for the landfill operator.Keywords: erosion, seepage, landfill, stability
Procedia PDF Downloads 1394295 Maras and Public Security in Central America in XXI Century
Authors: Michal Stelmach
Abstract:
The aim of this paper is a critical analysis of the security policy in the field of the fight against transnational criminal groups in Central America in XXI century. We are analyzing all taken issues from several perspectives: political, anthropological, sociological and legal which allows me to confront behavior and the attitudes of the political elites against official legislative changes and declared actions, strategies and policies against practice. In the first part of paper we would like to present the genesis and characteristic of transnational gangs, called maras and next we would like to present their activities and roles within chosen sectors of organized crimes. In the second part we will analyze the government’s policy towards transnational criminal groups. The analysis will be concentrated on public safety policy implemented in specific Central American countries as well as regional international cooperation. The main intention of the author is to present the state of the security in Central America in XXI century by emphasizing failures and successes in the fight against transnational criminal organizations. Additionally we want to present and define the challenges currently facing the region now and to show the prediction of the situation’s development within next future and to define the recommendations on the design of public security policies in Central American countries.Keywords: maras, public security, human rights, Central America
Procedia PDF Downloads 3374294 Empirical Prediction of the Effect of Rain Drops on Dbs System Operating in Ku-Band (Case Study of Abuja)
Authors: Tonga Agadi Danladi, Ajao Wasiu Bamidele, Terdue Dyeko
Abstract:
Recent advancement in microwave communications technologies especially in telecommunications and broadcasting have resulted in congestion on the frequencies below 10GHz. This has forced microwave designers to look for high frequencies. Unfortunately for frequencies greater than 10GHz rain becomes one of the main factors of attenuation in signal strength. At frequencies from 10GHz upwards, rain drop sizes leads to outages that compromises the availability and quality of service this making it a critical factor in satellite link budget design. Rain rate and rain attenuation predictions are vital steps to be considered when designing microwave satellite communication link operating at Ku-band frequencies (112-18GHz). Unreliable rain rates data in the tropical regions of the world like Nigeria from radio communication group of the international Telecommunication Union (ITU-R) makes it difficult for microwave engineers to determine a realistic rain margin that needs to be accommodated in satellite link budget design in such region. This work presents an empirical tool for predicting the amount of signal due to rain on DBS signal operating at the Ku-band.Keywords: attenuation, Ku-Band, microwave communication, rain rates
Procedia PDF Downloads 4894293 Critical Analysis of Different Actuation Techniques for a Micro Cantilever
Authors: B. G. Sheeparamatti, Prashant Hanasi, Vanita Abbigeri
Abstract:
The objective of this work is to carry out a critical comparison of different actuation mechanisms like electrostatic, thermal, piezoelectric, and magnetic with reference to a microcantilever. The relevant parameters like force generated, displacement are compared in actuation methods. With these results, they help in choosing the best actuation method for a particular application. In this study, Comsol/Multiphysics software is used. Modeling and simulation are done by considering the microcantilever of same dimensions as an actuator using all the above-mentioned actuation techniques. In addition to their small size, micro actuators consume very little power and are capable of accurate results. In this work, a comparison of actuation mechanisms is done to decide the efficient system in the micro domain.Keywords: actuation techniques, microswitch, micro actuator, microsystems
Procedia PDF Downloads 4134292 Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe
Authors: Innocent C. Ezenwa, Takashi Yoshino
Abstract:
Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values.Keywords: electrical resistivity, thermal conductivity, transport properties, geodynamo and geomagnetic field
Procedia PDF Downloads 1494291 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus
Authors: Ehsan Mehryaar, Reza Bushehri
Abstract:
One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response
Procedia PDF Downloads 2084290 Influence of Bacterial Motility on Biofilm Formation
Authors: Li Cheng, Zhang Yilei, Cohen Yehuda
Abstract:
Two motility mechanisms were introduced into iDynoMiCs software, which adopts an individual-based modeling method. Based on the new capabilities, along with the pressure motility developed before, influence of bacterial motility on biofilm formation was studied. Simulation results were evaluated both qualitatively through 3D structure inspections and quantitatively by parameter characterizations. It was showed that twitching motility increased the biofilm surface irregularity probably due to movement of cells towards higher nutrient concentration location whereas free motility, on the other hand, could make biofilms flatter and smoother relatively. Pressure motility showed no significant influence in this study.Keywords: iDynoMics, biofilm structure, bacterial motility, motility mechanisms
Procedia PDF Downloads 3924289 Application of Machine Learning Models to Predict Couchsurfers on Free Homestay Platform Couchsurfing
Authors: Yuanxiang Miao
Abstract:
Couchsurfing is a free homestay and social networking service accessible via the website and mobile app. Couchsurfers can directly request free accommodations from others and receive offers from each other. However, it is typically difficult for people to make a decision that accepts or declines a request when they receive it from Couchsurfers because they do not know each other at all. People are expected to meet up with some Couchsurfers who are kind, generous, and interesting while it is unavoidable to meet up with someone unfriendly. This paper utilized classification algorithms of Machine Learning to help people to find out the Good Couchsurfers and Not Good Couchsurfers on the Couchsurfing website. By knowing the prior experience, like Couchsurfer’s profiles, the latest references, and other factors, it became possible to recognize what kind of the Couchsurfers, and furthermore, it helps people to make a decision that whether to host the Couchsurfers or not. The value of this research lies in a case study in Kyoto, Japan in where the author has hosted 54 Couchsurfers, and the author collected relevant data from the 54 Couchsurfers, finally build a model based on classification algorithms for people to predict Couchsurfers. Lastly, the author offered some feasible suggestions for future research.Keywords: Couchsurfing, Couchsurfers prediction, classification algorithm, hospitality tourism platform, hospitality sciences, machine learning
Procedia PDF Downloads 1364288 Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields
Authors: Lei Zhang, Wen-jun Ruan, Hao Wang, Peng-Xin Wang
Abstract:
The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.Keywords: supersonic gas jet, Large Eddy Simulation(LES), acoustic noise, Ffowcs Williams-Hawkings(FW-H) equations, nozzle size
Procedia PDF Downloads 4144287 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics
Procedia PDF Downloads 864286 Resiliency, Peer and Parental Support as Determinants of Adolescents' Social Adjustment among Secondary Students in Ilorin, Kwara State
Authors: Titilola Adebowale
Abstract:
Some factors are responsible for the social adjustment among the adolescents. The study investigated resiliency, peer and parental support as factors that could determine social adjustment among adolescents in Ilorin, Kwara state. The study adopted descriptive survey research design. A sample size of 300 SS1 & SS2 students from ten secondary schools, six public and four private schools were randomly selected within Ilorin Metropolis. Self-structured questionnaire that was validated and the reliability ensured was used to collect data from the respondents. Four hypotheses were postulated and tested at 0.05 level of significance. Data collected was analysed using Pearson Product Moment Correlation (PPMC) and Regression Analysis. The findings revealed that there was a positive relationship between resiliency and social adjustment: r (298) = .402, p<0.01, r2 = .162; that there was a positive relationship between peer support and social adjustment: r (298) = .570, p<0.01, r2 = .325; that there was a positive relationship between parental support and social adjustment: r (298) = .451, p<0.01, r2 = .203; also reveals significant joint contribution of the independent variables (resilience, peer support, parental support) to the prediction of social adjustment: F (3,296) = 55.587, P<0.01. Various recommendations were given which includes the roles of government, agencies, individuals, parents, teachers, religious and marriage institutions.Keywords: resiliency, peer support, parental support, adolescents, social adjustment
Procedia PDF Downloads 1824285 The Impact of External Technology Acquisition and Exploitation on Firms' Process Innovation Performance
Authors: Thammanoon Charmjuree, Yuosre F. Badir, Umar Safdar
Abstract:
There is a consensus among innovation scholars that knowledge is a vital antecedent for firm’s innovation; e.g., process innovation. Recently, there has been an increasing amount of attention to more open approaches to innovation. This open model emphasizes the use of purposive flows of knowledge across the organization boundaries. Firms adopt open innovation strategy to improve their innovation performance by bringing knowledge into the organization (inbound open innovation) to accelerate internal innovation or transferring knowledge outside (outbound open innovation) to expand the markets for external use of innovation. Reviewing open innovation research reveals the following. First, the majority of existing studies have focused on inbound open innovation and less on outbound open innovation. Second, limited research has considered the possible interaction between both and how this interaction may impact the firm’s innovation performance. Third, scholars have focused mainly on the impact of open innovation strategy on product innovation and less on process innovation. Therefore, our knowledge of the relationship between firms’ inbound and outbound open innovation and how these two impact process innovation is still limited. This study focuses on the firm’s external technology acquisition (ETA) and external technology exploitation (ETE) and the firm’s process innovation performance. The ETA represents inbound openness in which firms rely on the acquisition and absorption of external technologies to complement their technology portfolios. The ETE, on the other hand, refers to commercializing technology assets exclusively or in addition to their internal application. This study hypothesized that both ETA and ETE have a positive relationship with process innovation performance and that ETE fully mediates the relationship between ETA and process innovation performance, i.e., ETA has a positive impact on ETE, and turn, ETE has a positive impact on process innovation performance. This study empirically explored these hypotheses in software development firms in Thailand. These firms were randomly selected from a list of Software firms registered with the Department of Business Development, Ministry of Commerce of Thailand. The questionnaires were sent to 1689 firms. After follow-ups and periodic reminders, we obtained 329 (19.48%) completed usable questionnaires. The structure question modeling (SEM) has been used to analyze the data. An analysis of the outcome of 329 firms provides support for our three hypotheses: First, the firm’s ETA has a positive impact on its process innovation performance. Second, the firm’s ETA has a positive impact its ETE. Third, the firm’s ETE fully mediates the relationship between the firm’s ETA and its process innovation performance. This study fills up the gap in open innovation literature by examining the relationship between inbound (ETA) and outbound (ETE) open innovation and suggest that in order to benefits from the promises of openness, firms must engage in both. The study went one step further by explaining the mechanism through which ETA influence process innovation performance.Keywords: process innovation performance, external technology acquisition, external technology exploitation, open innovation
Procedia PDF Downloads 2054284 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (ΔG) for Gene Silencing
Authors: Reena Murali, David Peter S.
Abstract:
The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies shows that up regulation of mRNA cause serious diseases like Cancer. So designing effective siRNA with good knockdown effects play an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (ΔG), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.Keywords: artificial neural network, double stranded RNA, RNA interference, short interfering RNA
Procedia PDF Downloads 5274283 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws
Authors: Jia-Jang Wu
Abstract:
This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.Keywords: torsional vibration, full-size model, scale model, scaling laws
Procedia PDF Downloads 4004282 Artificial Intelligence Methods for Returns Expectations in Financial Markets
Authors: Yosra Mefteh Rekik, Younes Boujelbene
Abstract:
We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation
Procedia PDF Downloads 449