Search results for: feeling driven to work
15113 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration
Authors: Dina Magdy Abdo, Ayat N. El-Shazly, E. A. Abdel-Aal
Abstract:
Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, the traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.Keywords: forward osmosis, membrane, solar, water treatement
Procedia PDF Downloads 9115112 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence
Authors: Sogand Barghi
Abstract:
The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting
Procedia PDF Downloads 7115111 Road Map to Health: Palestinian Workers in Israel's Construction Sector
Authors: Maya de Vries Kedem, Abir Jubran, Diana Baron
Abstract:
Employment in Israel offers Palestinian workers an income double what they can earn in the West Bank. The need to support their families leads many educated Palestinians to forgo finding work in their profession in the Palestinian Authority and instead look for employment in those sectors open to them in Israel, particularly the construction, agriculture, and industry sectors. The International Labor Organization estimated that about 1,200 workers in Israel die every year because of occupational diseases (diseases caused by working conditions). Construction workers in Israel are constantly exposed to dust, noise, chemical materials, and work in awkward postures, which require prolonged bending, repetitive motion, and other risk factors that can lead to illnesses and death. Occupational health is vastly neglected in Israel and construction workers are particularly at risk . As of June 2022, the Israeli quota in the construction sector for Palestinian workers stood at 80,000. Kav LaOved released a new study on the state of occupational health among Palestinian workers employed in construction in Israel. The study Roadmap to Health: Palestinian Workers in Israel's Construction Sector reviews the extent to which the health of Palestinian workers is protected at work in Israel. The report includes analysis of a survey administered to 256 workers as well as interviews with 10 workers and with 5 Israeli occupational health experts. Report highlights: • Among survey respondents, 63.9% stated that safety procedures to protect their health are rarely followed in their workplace (e.g., taking breaks, using protective gear, following restrictions on lifting heavy items, and having inspectors regularly on site to monitor safety). • All 256 Palestinian workers who participated to the survey said that their health has been directly or indirectly harmed by working in Israel and reported suffering from the following problems: orthopedic problems such as joint, hand, leg or knee problems (100%); headaches (75%); back problems (36.3%); eye problems (23.8%); breathing problems (17.6%); chronic pain (14.8%); heart problems (7.8%); and skin problems (3.5%). • Workers who are injured or do not feel well often continue working for fear of losing their payment for that day. About half of the 256 survey respondents reported that they pay brokerage fees to find an employer with a work permit, often paying between 2,000 and 3,000 NIS per month. “I have an obligation—I pay about NIS 120 a day for my permit, [and] I have to pay for it whether I work or not" a worker said. • Most Palestinian construction workers suffer from stress and mental health problems. Workers pointed to several issues that greatly affect their mood and mental state: daily crossings at crowded checkpoints where workers stand for hours; lack of sleep due to leaving home daily at 3:00-3:30 am; commuting two to four hours to work in each direction; and abusive work environments. A worker told KLO that the sight of thousands of workers standing together at the checkpoint causes “high blood pressure and the feeling that you are going to be squeezed.” Another said, “I felt that my bones would break.” In the survey workers reported suffering from insomnia (70.1%), breathing difficulties (35.8%), chest pressure (27.6%), or rapid pulse rate (12.2%).Keywords: construction sector, palestinian workers, occupational health, Israel, occupation
Procedia PDF Downloads 8915110 A Data-Driven Monitoring Technique Using Combined Anomaly Detectors
Authors: Fouzi Harrou, Ying Sun, Sofiane Khadraoui
Abstract:
Anomaly detection based on Principal Component Analysis (PCA) was studied intensively and largely applied to multivariate processes with highly cross-correlated process variables. Monitoring metrics such as the Hotelling's T2 and the Q statistics are usually used in PCA-based monitoring to elucidate the pattern variations in the principal and residual subspaces, respectively. However, these metrics are ill suited to detect small faults. In this paper, the Exponentially Weighted Moving Average (EWMA) based on the Q and T statistics, T2-EWMA and Q-EWMA, were developed for detecting faults in the process mean. The performance of the proposed methods was compared with that of the conventional PCA-based fault detection method using synthetic data. The results clearly show the benefit and the effectiveness of the proposed methods over the conventional PCA method, especially for detecting small faults in highly correlated multivariate data.Keywords: data-driven method, process control, anomaly detection, dimensionality reduction
Procedia PDF Downloads 29915109 Numerical Study on Self-Confined Plasmoid Transport Phenomena in an Electrodeless Plasma Thruster for Space Propulsion
Authors: Xiaodong Wen, Lijuan Liu, Xinfeng Sun
Abstract:
A high power electrodeless plasma thruster is being developed at Lanzhou Institute of Physics. In this thruster, a rotating magnetic field (RMF) driven by two radio-frequency coils which dephased by 90 degrees are applied both for propellant ionization and plasma acceleration. In the ionization stage, a very high azimuthal current can be driven by RMF and then makes plasma forms a field reversed configuration, namely self-confined plasmoid. Profoundly understanding the transport characteristics of the plasmoid in the following acceleration stage is the key to improve the thruster performances. In this paper, a 3D MHD model is established and the influences of the RMF and an applied magnetic field on the self-confined plasmoid acceleration are investigated. The simulation results show that, by applying a RMF with strength and frequency of 250 G and 370 kHz, the plasmoid can be accelerated to an average velocity of 17 km/s at the exit of the thruster.Keywords: electric space propulsion, field reversed configuration, rotating magnetic field, transport phenomena
Procedia PDF Downloads 14015108 Brainbow Image Segmentation Using Bayesian Sequential Partitioning
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning
Procedia PDF Downloads 48715107 The Impact of Australia's Skilled Migrant Selection System: A Case Study of Japanese Skilled Migrants and Their Families
Authors: Iori Hamada
Abstract:
Australia's skilled migrant selection system is constantly changing its target skills and criteria according to the labour market demands. The government's intention to employ this highly selective market-driven selection system is to better target the skills needed in the economy, enable skilled migrants to be employed in industries that have the highest need, and consequently boost the economy and population. However, migration scholars have called this intention into question, arguing that the system is not making the best use of skilled migrants. This paper investigates the impact of recent reforms in Australian skilled migration system on skilled migrants' employment and related life conditions. Drawing on semi-structured qualitative interviews with Japanese skilled migrants in Australia, it argues that Australia’s skilled migrant selection system guarantees neither skilled migrants' employment nor successful transfer of their skills to the labour market. The findings show that Japanese skilled migrants are often unemployed or under-employed, although they intend to achieve upward occupational mobility. The interview data also reveal that male unemployment or under-employment status prompts some Japanese men to leave Australia and find a job that better matches their skills and qualifications in a new destination. Further, it finds that Japanese male skilled migrants who experience downward occupational mobility tend to continue to take a primary breadwinner role, which affects the distribution of paid and unpaid work within their families. There is a growing body of research investigating skilled migrants’ downward career mobility. However, little has been written on skilled Japanese migrants. Further, the work-family intersection is a 'hot public policy topic' in Australia and elsewhere. Yet, the existing studies focus almost exclusively on non-migrant families. This calls attention to the urgency of assessing the work-family lives of skilled migrants. This study fills these gaps, presenting additional insight into Japanese skilled migrants’ work and family in and beyond Australia.Keywords: Australia, employment, family, Japanese skilled migrants
Procedia PDF Downloads 11615106 Time Driven Activity Based Costing Capability to Improve Logistics Performance: Application in Manufacturing Context
Authors: Siham Rahoui, Amr Mahfouz, Amr Arisha
Abstract:
In a highly competitive environment characterised by uncertainty and disruptions, such as the recent COVID-19 outbreak, supply chains (SC) face the challenge of maintaining their cost at minimum levels while continuing to provide customers with high-quality products and services. More importantly, businesses in such an economic context strive to maintain survival by keeping the cost of undertaken activities (such as logistics) low and in-house. To do so, managers need to understand the costs associated with different products and services in order to have a clear vision of the SC performance, maintain profitability levels, and make strategic decisions. In this context, SC literature explored different costing models that sought to determine the costs of undertaking supply chain-related activities. While some cost accounting techniques have been extensively explored in the SC context, more contributions are needed to explore the potential of time driven activity-based costing (TDABC). More specifically, more applications are needed in the manufacturing context of the SC, where the debate is ongoing. The aim of the study is to assess the capability of the technique to assess the operational performance of the logistics function. Through a case study methodology applied to a manufacturing company operating in the automotive industry, TDABC evaluates the efficiency of the current configuration and its logistics processes. The study shows that monitoring the process efficiency and cost efficiency leads to strategic decisions that contributed to improve the overall efficiency of the logistics processes.Keywords: efficiency, operational performance, supply chain costing, time driven activity based costing
Procedia PDF Downloads 16815105 Modelling Vehicle Fuel Consumption Utilising Artificial Neural Networks
Authors: Aydin Azizi, Aburrahman Tanira
Abstract:
The main source of energy used in this modern age is fossil fuels. There is a myriad of problems that come with the use of fossil fuels, out of which the issues with the greatest impact are its scarcity and the cost it imposes on the planet. Fossil fuels are the only plausible option for many vital functions and processes; the most important of these is transportation. Thus, using this source of energy wisely and as efficiently as possible is a must. The aim of this work was to explore utilising mathematical modelling and artificial intelligence techniques to enhance fuel consumption in passenger cars by focusing on the speed at which cars are driven. An artificial neural network with an error less than 0.05 was developed to be applied practically as to predict the rate of fuel consumption in vehicles.Keywords: mathematical modeling, neural networks, fuel consumption, fossil fuel
Procedia PDF Downloads 40615104 Well-being at Work in the Sports Sector: Systematic Review and Perspectives
Authors: Ouazoul Abdeloauhd, Jemjami Nadia
Abstract:
The concept of well-being at work is one of today's significant challenges in maintaining quality of life and managing psycho-social risks at work. Indeed, work in the sports sector has evolved, and this exponential evolution, marked by increasing demands and psychological, physical, and social challenges, which sometimes exceed the resources of sports actors, influences their sense of well-being at work. Well-being and burnout as antagonists provide information on the quality of working life in sports. The Basic aim of this literature review is to analyze the scientific corpus dealing with the subject of well-being at work in the sports sector while exploring the link between sports burnout and well-being. The results reveal the richness of the conceptual approaches and the difficulties of implementing them. Prospects for future research have, therefore, been put forward.Keywords: well-being, burnout, quality of life, psycho-social risk, work on sports sector
Procedia PDF Downloads 9215103 A Triad Pedagogy for Increased Digital Competence of Human Resource Management Students: Reflecting on Human Resource Information Systems at a South African University
Authors: Esther Pearl Palmer
Abstract:
Driven by the increased pressure on Higher Education Institutions (HEIs) to produce work-ready graduates for the modern world of work, this study reflects on triad teaching and learning practices to increase student engagement and employability. In the South African higher education context, the employability of graduates is imperative in strengthening the country’s economy and in increasing competitiveness. Within this context, the field of Human Resource Management (HRM) calls for innovative methods and approaches to teaching and learning and assessing the skills and competencies of graduates to render them employable. Digital competency in Human Resource Information Systems (HRIS) is an important component and prerequisite for employment in HRM. The purpose of this research is to reflect on the subject HRIS developed by lecturers at the Central University of Technology, Free State (CUT), with the intention to actively engage students in real-world learning activities and increase their employability. The Enrichment Triad Model (ETM) was used as theoretical framework to develop the subject as it supports a triad teaching and learning approach to education. It is, furthermore, an inter-structured model that supports collaboration between industry, academics and students. The study follows a mixed-method approach to reflect on the learning experiences of the industry, academics and students in the subject field over the past three years. This paper is a work in progress and seeks to broaden the scope of extant studies about student engagement in work-related learning to increase employability. Based on the ETM as theoretical framework and pedagogical practice, this paper proposes that following a triad teaching and learning approach will increase work-related skills of students. Findings from the study show that students, academics and industry alike regard educational opportunities that incorporate active learning experiences with the world of work enhances student engagement in learning and renders them more employable.Keywords: digital competence, enriched triad model, human resource information systems, student engagement, triad pedagogy.
Procedia PDF Downloads 9215102 Binocular Heterogeneity in Saccadic Suppression
Authors: Evgeny Kozubenko, Dmitry Shaposhnikov, Mikhail Petrushan
Abstract:
This work is focused on the study of the binocular characteristics of the phenomenon of perisaccadic suppression in humans when perceiving visual objects. This phenomenon manifests in a decrease in the subject's ability to perceive visual information during saccades, which play an important role in purpose-driven behavior and visual perception. It was shown that the impairment of perception of visual information in the post-saccadic time window is stronger (p < 0.05) in the ipsilateral eye (the eye towards which the saccade occurs). In addition, the observed heterogeneity of post-saccadic suppression in the contralateral and ipsilateral eyes may relate to depth perception. Taking the studied phenomenon into account is important when developing ergonomic control panels in modern operator systems.Keywords: eye movement, natural vision, saccadic suppression, visual perception
Procedia PDF Downloads 15815101 Patent Protection for AI Innovations in Pharmaceutical Products
Authors: Nerella Srinivas
Abstract:
This study explores the significance of patent protection for artificial intelligence (AI) innovations in the pharmaceutical sector, emphasizing applications in drug discovery, personalized medicine, and clinical trial optimization. The challenges of patenting AI-driven inventions are outlined, focusing on the classification of algorithms as abstract ideas, meeting the non-obviousness standard, and issues around defining inventorship. The methodology includes examining case studies and existing patents, with an emphasis on how companies like Benevolent AI and Insilico Medicine have successfully secured patent rights. Findings demonstrate that a strategic approach to patent protection is essential, with particular attention to showcasing AI’s technical contributions to pharmaceutical advancements. Conclusively, the study underscores the critical role of understanding patent law and innovation strategies in leveraging intellectual property rights in the rapidly advancing field of AI-driven pharmaceuticals.Keywords: artificial intelligence, pharmaceutical industry, patent protection, drug discovery, personalized medicine, clinical trials, intellectual property, non-obviousness
Procedia PDF Downloads 1515100 A Case Study of Rainfall Derived Inflow/Infiltration in a Separate Sewer System in Gwangju, Korea
Authors: Bumjo Kim, Hyun Jin Kim, Joon Ha Kim
Abstract:
The separate sewer system is that collects the wastewater as a sewer pipe and rainfall as a stormwater pipe separately, and then sewage is treated in the wastewater treatment plant, the stormwater is discharged to rivers or lakes through stormwater drainage pipes. Unfortunately, even for separate sewer systems, it is not possible to prevent Rainfall Driven Inflow/Infiltration(RDII) completely to the sewer pipe. Even if the sewerage line is renovated, there is an ineluctable RDII due to the combined sewer system in the house or the difficulty of sewage maintenance in private areas. The basic statistical analysis was performed using environmental data including rainfall, sewage, water qualities and groundwater level in the strict of Gwangju in South Korea. During rainfall in the target area, RDII showed an increased rate of 13.4 ~ 53.0% compared to that of a clear day and showed a rapid hydrograph response of 0.3 ~ 3.0 hr. As a result of water quality analysis, BOD5 concentration decreased by 17.3 % and salinity concentration decreased by 8.8 % at the representative spot in the project area compared to the sunny day during rainfall. In contrast to the seasonal fluctuation range of 0.38 m ~ 0.55 m in groundwater in Gwangju area and 0.58 m ~ 0.78 m in monthly fluctuation range, while the difference between groundwater level and the depth of sewer pipe laying was 2.70 m on average, which is larger than the range of fluctuation. Comprehensively, it can be concluded that the increasing of flowrate at sewer line is due to not infiltration water caused by groundwater level rise, construction failure, cracking due to joint failure or conduit deterioration, rainfall was directly inflowed into the sewer line rapidly. Acknowledgements: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: ground water, rainfall, rainfall driven inflow/infiltration, separate sewer system
Procedia PDF Downloads 16115099 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration
Authors: Dina Magdy Abdo, Ayat N. El-Shazly, Hamdy Maamoun Abdel-Ghafar, E. A. Abdel-Aal
Abstract:
Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of the doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.Keywords: forword, membrane, solar, water treatment
Procedia PDF Downloads 8115098 Fuzzy Multi-Criteria Decision-Making Based on Ignatian Discernment Process
Authors: Pathinathan Theresanathan, Ajay Minj
Abstract:
Ignatian Discernment Process (IDP) is an intense decision-making tool to decide on life-issues. Decisions are influenced by various factors outside of the decision maker and inclination within. This paper develops IDP in the context of Fuzzy Multi-criteria Decision Making (FMCDM) process. Extended VIKOR method is a decision-making method which encompasses even conflict situations and accommodates weightage to various issues. Various aspects of IDP, namely three ways of decision making and tactics of inner desires, are observed, analyzed and articulated within the frame work of fuzzy rules. The decision-making situations are broadly categorized into two types. The issues outside of the decision maker influence the person. The inner feeling also plays vital role in coming to a conclusion. IDP integrates both the categories using Extended VIKOR method. Case studies are carried out and analyzed with FMCDM process. Finally, IDP is verified with an illustrative case study and results are interpreted. A confused person who could not come to a conclusion is able to take decision on a concrete way of life through IDP. The proposed IDP model recommends an integrated and committed approach to value-based decision making.Keywords: AHP, FMCDM, IDP, ignatian discernment, MCDM, VIKOR
Procedia PDF Downloads 26015097 A Deluge of Disaster, Destruction, Death and Deception: Negative News and Empathy Fatigue in the Digital Age
Authors: B. N. Emenyeonu
Abstract:
Initially identified as sensationalism in the eras of yellow journalism and tabloidization, the inclusion of news which shocks or provokes strong emotional responses among readers, viewers, and browsers has not only remained a persistent feature of journalism but has also seemingly escalated in the current climate of digital and social media. Whether in the relentless revelation of scandals in high places, profiles on people displaced by sporadic wars or natural disasters, gruesome accounts of trucks plowing into pedestrians in a city centre, or the coverage of mourners paying tributes to victims of a mass shooting, mainstream, and digital media are often awash with tragedy, tears, and trauma. While it may aim at inspiring sympathy, outrage, or even remedial reactions, it would appear that the deluge of grief and misery in the news merely generates in the audience a feeling that borders on hearing or seeing too much to care or act. This feeling also appears to be accentuated by the dizzying diffusion of social media news and views, most of whose authenticity is not easily verifiable. Through a survey of 400 regular consumers of news and an in-depth interview of 10 news managers in selected media organizations across the Middle East, this study therefore investigates public attitude to the profusion of bad news in mainstream and digital media. Among other targets, it examines whether the profusion of bad news generates empathy fatigue among the audience and, if so, whether there is any association between biographic variables (profession, age, and gender) and an inclination to empathy fatigue. It also seeks to identify which categories of bad news and media are most likely to drag the audience into indifference. In conclusion, the study discusses the implications of the findings for mass-mediated advocacies such as campaigns against conflicts, corruption, nuclear threats, terrorism, gun violence, sexual crimes, and human trafficking, among other threats to humanity.Keywords: digital media, empathy fatigue, media campaigns, news selection
Procedia PDF Downloads 6115096 Assessment of Hydrogen Demand for Different Technological Pathways to Decarbonise the Aviation Sector in Germany
Authors: Manish Khanra, Shashank Prabhu
Abstract:
The decarbonization of hard-to-abate sectors is currently high on the agenda in the EU and its member states, as these sectors have substantial shares in overall GHG emissions while it is facing serious challenges to decarbonize. In particular, the aviation sector accounts for 2.8% of global anthropogenic CO₂ emissions. These emissions are anticipated to grow dramatically unless immediate mitigating efforts are implemented. Hydrogen and its derivatives based on renewable electricity can have a key role in the transition towards CO₂-neutral flights. The substantial shares of energy carriers in the form of drop-in fuel, direct combustion and Hydrogen-to-Electric are promising in most scenarios towards 2050. For creating appropriate policies to ramp up the production and utilisation of hydrogen commodities in the German aviation sector, a detailed analysis of the spatial distribution of supply-demand sites is essential. The objective of this research work is to assess the demand for hydrogen-based alternative fuels in the German aviation sector to achieve the perceived goal of the ‘Net Zero’ scenario by 2050. Here, the analysis of the technological pathways for the production and utilisation of these fuels in various aircraft options is conducted for reaching mitigation targets. Our method is based on data-driven bottom-up assessment, considering production and demand sites and their spatial distribution. The resulting energy demand and its spatial distribution with consideration of technology diffusion lead to a possible transition pathway of the aviation sector to meet short-term and long-term mitigation targets. Additionally, to achieve mitigation targets in this sector, costs and policy aspects are discussed, which would support decision-makers from airline industries, policymakers and the producers of energy commodities.Keywords: the aviation sector, hard-to-abate sectors, hydrogen demand, alternative fuels, technological pathways, data-driven approach
Procedia PDF Downloads 13115095 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation
Authors: Ying Xin, Shigeki Kametani
Abstract:
This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does. In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.Keywords: energy-saving, variable refrigerant flow, gas engine heat pump, electric driven heat pump, air conditioning system
Procedia PDF Downloads 29815094 Redefining Infrastructure as Code Orchestration Using AI
Authors: Georges Bou Ghantous
Abstract:
This research delves into the transformative impact of Artificial Intelligence (AI) on Infrastructure as Code (IaaC) practices, specifically focusing on the redefinition of infrastructure orchestration. By harnessing AI technologies such as machine learning algorithms and predictive analytics, organizations can achieve unprecedented levels of efficiency and optimization in managing their infrastructure resources. AI-driven IaaC introduces proactive decision-making through predictive insights, enabling organizations to anticipate and address potential issues before they arise. Dynamic resource scaling, facilitated by AI, ensures that infrastructure resources can seamlessly adapt to fluctuating workloads and changing business requirements. Through case studies and best practices, this paper sheds light on the tangible benefits and challenges associated with AI-driven IaaC transformation, providing valuable insights for organizations navigating the evolving landscape of digital infrastructure management.Keywords: artificial intelligence, infrastructure as code, efficiency optimization, predictive insights, dynamic resource scaling, proactive decision-making
Procedia PDF Downloads 3615093 Development of Medical Intelligent Process Model Using Ontology Based Technique
Authors: Emmanuel Chibuogu Asogwa, Tochukwu Sunday Belonwu
Abstract:
An urgent demand for creative solutions has been created by the rapid expansion of medical knowledge, the complexity of patient care, and the requirement for more precise decision-making. As a solution to this problem, the creation of a Medical Intelligent Process Model (MIPM) utilizing ontology-based appears as a promising way to overcome this obstacle and unleash the full potential of healthcare systems. The development of a Medical Intelligent Process Model (MIPM) using ontology-based techniques is motivated by a lack of quick access to relevant medical information and advanced tools for treatment planning and clinical decision-making, which ontology-based techniques can provide. The aim of this work is to develop a structured and knowledge-driven framework that leverages ontology, a formal representation of domain knowledge, to enhance various aspects of healthcare. Object-Oriented Analysis and Design Methodology (OOADM) were adopted in the design of the system as we desired to build a usable and evolvable application. For effective implementation of this work, we used the following materials/methods/tools: the medical dataset for the test of our model in this work was obtained from Kaggle. The ontology-based technique was used with Confusion Matrix, MySQL, Python, Hypertext Markup Language (HTML), Hypertext Preprocessor (PHP), Cascaded Style Sheet (CSS), JavaScript, Dreamweaver, and Fireworks. According to test results on the new system using Confusion Matrix, both the accuracy and overall effectiveness of the medical intelligent process significantly improved by 20% compared to the previous system. Therefore, using the model is recommended for healthcare professionals.Keywords: ontology-based, model, database, OOADM, healthcare
Procedia PDF Downloads 7915092 Organizational Learning, Job Satisfaction and Work Performance among Nurses
Authors: Rafia Rafique, Arifa Khadim
Abstract:
This research investigates the moderating role of job satisfaction between organizational learning and work performance among nurses. Correlation research design was used. Non-probability purposive sampling technique was utilized to recruit a sample of 110 nurses from public hospitals situated in the city of Lahore. The construct of organizational learning was measured using subscale of Integrated Scale for Measuring Organizational Learning. Job satisfaction was measured with the help of Job Satisfaction Survey. Performance of employees (task performance, contextual performance and counterproductive work behavior) was assessed by Individual Work Performance Questionnaire. Job satisfaction negatively moderates the relationship between organizational learning and counterproductive work behavior. Education has a significant positive relationship with organizational learning. Age, current hospital experience, marital satisfaction and salary of the nurses have positive relationship while number of children has significant negative relationship with counterproductive work behavior. These outcomes can be insightful in understanding the dynamics involved in work performance. Based on the result of this study relevant solutions can be proposed to improve the work performance of nurses.Keywords: counterproductive work behavior, nurses, organizational learning, work performance
Procedia PDF Downloads 44615091 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors
Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder
Abstract:
In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished through the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.Keywords: analog to digital conversion, digitization, sampling rate, ultrasonic
Procedia PDF Downloads 20715090 Beyond Personal Evidence: Using Learning Analytics and Student Feedback to Improve Learning Experiences
Authors: Shawndra Bowers, Allie Brandriet, Betsy Gilbertson
Abstract:
This paper will highlight how Auburn Online’s instructional designers leveraged student and faculty data to update and improve online course design and instructional materials. When designing and revising online courses, it can be difficult for faculty to know what strategies are most likely to engage learners and improve educational outcomes in a specific discipline. It can also be difficult to identify which metrics are most useful for understanding and improving teaching, learning, and course design. At Auburn Online, the instructional designers use a suite of data based student’s performance, participation, satisfaction, and engagement, as well as faculty perceptions, to inform sound learning and design principles that guide growth-mindset consultations with faculty. The consultations allow the instructional designer, along with the faculty member, to co-create an actionable course improvement plan. Auburn Online gathers learning analytics from a variety of sources that any instructor or instructional design team may have access to at their own institutions. Participation and performance data, such as page: views, assignment submissions, and aggregate grade distributions, are collected from the learning management system. Engagement data is pulled from the video hosting platform, which includes unique viewers, views and downloads, the minutes delivered, and the average duration each video is viewed. Student satisfaction is also obtained through a short survey that is embedded at the end of each instructional module. This survey is included in each course every time it is taught. The survey data is then analyzed by an instructional designer for trends and pain points in order to identify areas that can be modified, such as course content and instructional strategies, to better support student learning. This analysis, along with the instructional designer’s recommendations, is presented in a comprehensive report to instructors in an hour-long consultation where instructional designers collaborate with the faculty member on how and when to implement improvements. Auburn Online has developed a triage strategy of priority 1 or 2 level changes that will be implemented in future course iterations. This data-informed decision-making process helps instructors focus on what will best work in their teaching environment while addressing which areas need additional attention. As a student-centered process, it has created improved learning environments for students and has been well received by faculty. It has also shown to be effective in addressing the need for improvement while removing the feeling the faculty’s teaching is being personally attacked. The process that Auburn Online uses is laid out, along with the three-tier maintenance and revision guide that will be used over a three-year implementation plan. This information can help others determine what components of the maintenance and revision plan they want to utilize, as well as guide them on how to create a similar approach. The data will be used to analyze, revise, and improve courses by providing recommendations and models of good practices through determining and disseminating best practices that demonstrate an impact on student success.Keywords: data-driven, improvement, online courses, faculty development, analytics, course design
Procedia PDF Downloads 6215089 Desalination Performance of a Passive Solar-Driven Membrane Distiller: Effect of Middle Layer Material and Thickness
Authors: Glebert C. Dadol, Pamela Mae L. Ucab, Camila Flor Y. Lobarbio, Noel Peter B. Tan
Abstract:
Water scarcity is a global problem and membrane-based desalination technologies are one of the promising solutions to this problem. In this study, a passive solar-driven membrane distiller was fabricated and tested for its desalination performance. The distiller was composed of a TiNOX plate solar absorber, cellulose-based upper and lower hydrophilic layers, a hydrophobic middle layer, and aluminum heatsinks. The effect of the middle layer material and thickness on the desalination performance was investigated in terms of distillate productivity and salinity. The materials used for the middle layer were a screen mesh (2 mm, 4 mm, 6 mm thickness) to generate an air gap, a PTFE membrane (0.3 mm thickness)), and a combination of the screen mesh and the PTFE membrane (2.3 mm total thickness). Salt water (35 g/L NaCl) was desalinated using the distiller at a rooftop setting at the University of San Carlos, Cebu City, Philippines. The highest distillate productivity of 1.08 L/m2-h was achieved using a 2-mm screen mesh (air gap) but it also resulted in a high distillate salinity of 25.20 g/L. Increasing the thickness of the air gap lowered the distillate salinity but also decreased the distillate productivity. The lowest salinity of 1.07 g/L was achieved using a 6-mm air gap but the productivity was reduced to 0.08 L/m2-h. The use of the hydrophobic PTFE membrane increased the productivity (0.44 L/m2-h) compared to a 6-mm air gap but produced a distillate with high salinity (16.68 g/L). When using a combination of the screen mesh and the PTFE membrane, the productivity was 0.13 L/m2-h and a distillate salinity of 1.61 g/L. The distiller with a thick air gap as the middle layer can deliver a distillate with low salinity and is preferred over a thin hydrophobic PTFE membrane. The use of a combination of the air gap and PTFE membrane slightly increased the productivity with comparable distillate salinity. Modifications and optimizations to the distiller can be done to improve further its performance.Keywords: desalination, membrane distillation, passive solar-driven membrane distiller, solar distillation
Procedia PDF Downloads 12015088 Instant Data-Driven Robotics Fabrication of Light-Transmitting Ceramics: A Responsive Computational Modeling Workflow
Authors: Shunyi Yang, Jingjing Yan, Siyu Dong, Xiangguo Cui
Abstract:
Current architectural façade design practices incorporate various daylighting and solar radiation analysis methods. These emphasize the impact of geometry on façade design. There is scope to extend this knowledge into methods that address material translucency, porosity, and form. Such approaches can also achieve these conditions through adaptive robotic manufacturing approaches that exploit material dynamics within the design, and alleviate fabrication waste from molds, ultimately accelerating the autonomous manufacturing system. Besides analyzing the environmental solar radiant in building facade design, there is also a vacancy research area of how lighting effects can be precisely controlled by engaging the instant real-time data-driven robot control and manipulating the material properties. Ceramics carries a wide range of transmittance and deformation potentials for robotics control with the research of its material property. This paper presents one semi-autonomous system that engages with real-time data-driven robotics control, hardware kit design, environmental building studies, human interaction, and exploratory research and experiments. Our objectives are to investigate the relationship between different clay bodies or ceramics’ physio-material properties and their transmittance; to explore the feedback system of instant lighting data in robotic fabrication to achieve precise lighting effect; to design the sufficient end effector and robot behaviors for different stages of deformation. We experiment with architectural clay, as the material of the façade that is potentially translucent at a certain stage can respond to light. Studying the relationship between form, material properties, and porosity can help create different interior and exterior light effects and provide façade solutions for specific architectural functions. The key idea is to maximize the utilization of in-progress robotics fabrication and ceramics materiality to create a highly integrated autonomous system for lighting facade design and manufacture.Keywords: light transmittance, data-driven fabrication, computational design, computer vision, gamification for manufacturing
Procedia PDF Downloads 12415087 Numerical Study of Mixed Convection Coupled to Radiation in a Square Cavity with a Lid-Driven
Authors: Belmiloud Mohamed Amine, Sad Chemloul Nord-Eddine
Abstract:
In this study we investigated numerically heat transfer by mixed convection coupled to radiation in a square cavity; the upper horizontal wall is movable. The purpose of this study is to see the influence of the emissivity and the varying of the Richardson number on the variation of the average Nusselt number. The vertical walls of the cavity are differentially heated, the left wall is maintained at a uniform temperature higher than the right wall, and the two horizontal walls are adiabatic. The finite volume method is used for solving the dimensionless governing equations. Emissivity values used in this study are ranged between 0 and 1, the Richardson number in the range 0.1 to10. The Rayleigh number is fixed to Ra = 10000 and the Prandtl number is maintained constant Pr = 0.71. Streamlines, isothermal lines and the average Nusselt number are presented according to the surface emissivity. The results of this study show that the Richardson number and emissivity affect the average Nusselt number.Keywords: mixed convection, square cavity, wall emissivity, lid-driven, numerical study
Procedia PDF Downloads 34815086 The Korean Neo-Confucian Ideal of Pluralism and Han
Authors: Hyeon Sop Baek
Abstract:
This paper will investigate the Korean concept of han and suggest that the feeling of han is essentially inseparable from the central project of the Korean neo-Confucian philosophical tradition. Han is a complex sentiment, but one may characterize it as an internally directed complex of sentiments of frustration, sadness, and anger. In particular, this paper aims to demonstrate that the Korean neo-Confucian project's ultimate objective was to build a pluralistic world – where different people can coexist together in harmony and participate in building the ideal world. Nevertheless, the confrontation between the neo-Confucian idea – that every person has the intrinsic potential to be moral – and the bleakness of reality that made their objective virtually impossible to achieve led to the formation and development of the feeling of han. The paper will first examine the concept of han and what it entails and then investigate the core elements of Korean neo-Confucianism, examining the works of Korean neo-Confucians, including Toegye, Yulgok, and Jeong Dojeon. Furthermore, the concept of plurality will be drawn from the political theory of Hannah Arendt. While the Arendtian and Korean neo-Confucian philosophies are ultimately different, this paper will contend that the two philosophies' broader aims share many resonating points. Specifically, within both philosophies, the human plurality – that all humans are equal but not the same – underlies the foundation of an ideal political realm. From there, an argument that the difficulty faced by the neo-Confucians in Korea in constructing a polity based on the ideal of respect and human moral capacity ultimately contributed to the emergence of the sentiment han will be presented. In conclusion, this paper will demonstrate that the ultimate objectives of Korean Confucianism lie in closing the gap between the ideal and reality in moral cultivation as well as its political project of building an ideal, pluralistic world, and han emerges from the realization of the difficulty of achieving that goal. Finally, this paper will contest that han needs not be perceived negatively, and han can be a driving force for political participation in the contemporary democratic, pluralistic society.Keywords: Korea, Confucianism, neo-Confucianism, philosophy, han, Korean philosophy
Procedia PDF Downloads 14215085 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE
Authors: Oualid Walid Ben Ali
Abstract:
Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE
Procedia PDF Downloads 49115084 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 169