Search results for: electrolyzed oxidizing water (EOW)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8698

Search results for: electrolyzed oxidizing water (EOW)

8428 Nexus of Socio-Demographic Factors and Water Fetching Practices: A Study in South-Western Bangladesh

Authors: Mufti Nadimul Quamar Ahmed

Abstract:

Universal and equitable access to safe and inexpensive water is one of the core goals of UN Sustainable Development (Goal-6). Rainwater harvesting and drinkable water scarcity are also prominent themes in the current literature. However, the lack of readily available drinking water sources is a serious roadblock in achieving this major goal in developing countries, especially in Bangladesh. In this study, we aimed to explore how water collecting activities in Bangladesh's coastal region are influenced by participants’ selected socio-demographic characteristics. We gathered information using a structured questionnaire from 154 people who were chosen at random from two of Bangladesh's most susceptible subdistricts situated in the country's southwest coast. Our results show that majority of the respondents think water fetching is a job for the woman as like their other day-day to household works and it’s not a man's duty. Interestingly, we found that person's age, family structure, monthly income and religion all play important roles in how they see and behave water-gathering techniques. Moreover, the local taboo on women and men's roles in water-gathering is also evident in the studied areas.

Keywords: water fetching, socio-demographic characteristic, coastal region, Bangladesh, SDG

Procedia PDF Downloads 123
8427 Synthesis of Visible-Light-Driven Magnetically Recoverable N-TiO2@SiO2@Fe3O4 Nanophotocatalyst for Enhanced Degradation of Ibuprofen

Authors: Ashutosh Kumar, Irene M. C. Lo

Abstract:

Ever since the discovery of TiO2 for decomposition of cyanide in water, it has been investigated extensively for the photocatalytic degradation of environmental pollutants, and became the most practical and prevalent photocatalyst. The superiority of TiO2 is due to its chemical and biological inertness, nontoxicity, strong oxidizing power and cost-effectiveness. However, during degradation of pollutants in wastewater, it suffers from problems, such as (a) separation after use, and (b) its poor photocatalytic performance under visible light irradiation (~45% of the solar spectrum). In order to bridge the research gaps, N-TiO2@SiO2@Fe3O4 nanophotocatalysts of average size 19 nm and effective surface area 47 m2 gm-1 were synthesized using sol-gel method. The characterization was performed using BET, TEM-EDX, VSM and XRD. The performance was improved by considering different factors involved during the synthesis, such as calcination temperature, amount of Fe3O4 nanoparticles used and amount of urea used for N-doping. The final nanophotocatalyst was calcined at 500 °C which was able to degrade 94% of the ibuprofen within 5 h of irradiation time. Under the influence of ~200 mT electromagnetic field, 95% nanophotocatalysts separation efficiency was achieved within 20-25 min. Moreover, the effect of different visible light source of similar irradiance, such as compact fluorescent lamp (CFL) and light emitting diode (LED), is also investigated in this research. The performance of nanophotocatalysts was found to be comparatively higher under ~310 µW cm-2 irradiance with peak emissive wavelengths of 543 nm emitted by CFL. Therefore, a promising visible-light-driven magnetically separable TiO2-based nanophotocatalysts was synthesized for the efficient degradation of ibuprofen.

Keywords: ibuprofen, magnetic N-TiO2, photocatalysis, visible light sources

Procedia PDF Downloads 248
8426 Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field

Authors: Abdulfatah Faraj Aboufayed

Abstract:

Water erosion is the most important problems of the soil in the Jebel Nefusa area located in north west of Libya, therefore erosion station had been established in the Faculty of Veterinary and rainfed agriculture research Station, University of the Jepel Algherbee in Zentan. The length of the station is 72.6 feet, 6 feet width, and the percentage of it's slope is 3%. The station was established to measure the mount of soil eroded and amount of surface water produced during the seasons 95/96 and 96/97 from each rain storms. The Monitoring shows that there was a difference between the two seasons in the number of rainstorms which made differences in the amount of surface runoff water and the amount of soil eroded between the two seasons. Although the slope is low (3%), the soil texture is sandy and the land ploughed twice during each season surface runoff and soil eroded occurred. The average amount of eroded soil was 3792 grams (gr) per season and the average amount of surface runoff water was 410 litter (L) per season. The amount of surface runoff water would be much greater from Jebel Nefusa upland with steep slopes and collecting of them will save a valuable amount of water which lost as a runoff while this area is in desperate of this water. The regression analysis of variance show strong correlation between rainfall depth and the other two depended variable (the amount of surface runoff water and the amount of eroded soil). It shows also strong correlation between amount of surface runoff water and amount of eroded soil.

Keywords: rain, surface runoff water, soil, water erosion, soil erosion

Procedia PDF Downloads 403
8425 Water Productivity and Sensitivity Tolerance Stress Indices in Five Soybean Cultivars (Glycine max L.) at Different Levels of Water Deficit

Authors: Hassan Masoumi, Rashed Alavi, Mahmoud Reza Khorshidian

Abstract:

In order to measure the water deficit stress effects on seed yield and water productivity of soybean cultivars, a two field experiments wad conducted out via split plot in a randomized complete block design with four replications in 2011 and 2012. Irrigation treatments were three levels (S1; 50, S2; 62.5 and S3; 150 mm) that applied based on evaporation from the ‘class A’ pan. Cultivars were L17, Clean, T.M.S, Williams×Chippewa and M9, too. The results showed that, only extreme water deficit stresses (S3) was reduced number of pods per plants, dry weight, seed yield and also water productivity and water economic productivity, significantly. Among cultivars and at the first and second levels of irrigation (S1, S2) cultivar of L17 and at the third level (S3) cultivar of Wiiliams*Chippwea had the highest seed yield, water productivity and water economic productivity. There were observed a positive and significant correlation between seed yield with number of pods per plants and plants dry weight, too. Also, despite the reduction in water consumption at level of S2 than S1 and due to the lack of a significant reduction in seed yield, water productivity and water economic productivity was also increased, significantly (P < 0.01). All indices of sensitivity and tolerance (SSI, STI and GMP) investigated in this study showed that at the moderate and extreme water deficit stresses (S2, S3), the cultivars of L17 and Wiiliams * Chippwea had the highest tolerance and lowest sensitivity among the cultivars.

Keywords: drought, sensitivity indices, yield components, seed

Procedia PDF Downloads 408
8424 Irrigation Challenges, Climate Change Adaptation and Sustainable Water Usage in Developing Countries. A Case Study, Nigeria

Authors: Faith Eweluegim Enahoro-Ofagbe

Abstract:

Worldwide, every nation is experiencing the effects of global warming. In developing countries, due to the heavy reliance on agriculture for socioeconomic growth and security, among other things, these countries are more affected by climate change, particularly with the availability of water. Floods, droughts, rising temperatures, saltwater intrusion, groundwater depletion, and other severe environmental alterations are all brought on by climatic change. Life depends on water, a vital resource; these ecological changes affect all water use, including agriculture and household water use. Therefore adequate and adaptive water usage strategies for sustainability are essential in developing countries. Therefore, this paper investigates Nigeria's challenges due to climate change and adaptive techniques that have evolved in response to such issues to ensure water management and sustainability for irrigation and provide quality water to residents. Questionnaires were distributed to respondents in the study area, central Nigeria, for quantitative evaluation of sustainable water resource management techniques. Physicochemical analysis was done, collecting soil and water samples from several locations under investigation. Findings show that farmers use different methods, ranging from intelligent technologies to traditional strategies for water resource management. Also, farmers need to learn better water resource management techniques for sustainability. Since more residents obtain their water from privately held sources, the government should enforce legislation to ensure that private borehole construction businesses treat water sources of poor quality before the general public uses them.

Keywords: developing countries, irrigation, strategies, sustainability, water resource management, water usage

Procedia PDF Downloads 115
8423 Determining Water Infiltration Zone Using 2-D Resistivity Imaging Technique

Authors: Azim Hilmy Mohamad Yusof, Muhamad Iqbal Mubarak Faharul Azman, Nur Azwin Ismail, Noer El Hidayah Ismail

Abstract:

Infiltration is the process by which precipitation or water soaks into subsurface soils and moves into rocks through cracks and pore spaces. This paper explains how the water infiltration will be identified using 2-D resistivity imaging. Padang Minden, in Universiti Sains Malaysia, Penang has been chosen as the survey area during this study. The study area consists of microcline granite with grain size of medium to coarse. 2-D Resistivity Imaging survey is used to detect subsurface layer for many years by making measurements on the ground surface. The result shows that resistivity value of 0.015 Ωm - 10 Ωm represent the salt water intrusion zone while the resistivity value of 11 Ωm - 100 Ωm is suggested as the boundary zone between the salt water intrusion zone and low saturated zone.

Keywords: 2-D resistivity imaging, microcline granite, salt water intrusion, water infiltration

Procedia PDF Downloads 341
8422 Water Temperature on Early Age Concrete Property

Authors: Tesfaye Sisay Dessalegn

Abstract:

The long-term performance of concrete structures is affected by the properties and behavior of concrete at an early age. However, the fundamental mechanisms affecting the early-age behavior of concrete have not yet been fully studied. The effect of water temperature on concrete is not sufficiently studied, and at the same time, the majority of studies focused on the effect of mixing water temperature on the workability and mechanical properties of concrete. However, to the best of the authors' knowledge, the effect of mixing water temperatures on plastic shrinkage cracking of concrete has not been studied yet.

Keywords: water temperature, early age concrete strength, mechanical properties of concrete, strength

Procedia PDF Downloads 57
8421 Experimental Support for the District Metered Areas/Pressure Management Areas Application

Authors: K. Ilicic, D. Smoljan

Abstract:

The purpose of the paper is to present and verify a methodology of decreasing water losses by introducing and managing District Metered Areas (DMA) and Pressure Management Areas (PMA) by analyzing the results of the application of the methodology to the water supply system of the city of Zagreb. Since it is a relatively large system that has been expanding rapidly, approach to addressing water losses was possible only by splitting the system to smaller flow and pressure zones. Besides, the geographical and technical limitations had imposed the necessity of high pressure in the system that needed to be reduced to the technically optimal level. Results of activities were monitored on a general and local level by establishing, monitoring, and controlling indicators that had been established by the International Water Association (IWA), among which the most recognizable were non-revenue water, water losses and real losses as presented in the paper.

Keywords: district metered area, pressure metered area, active leakage control, water losses

Procedia PDF Downloads 184
8420 Effect of Wettability Alteration in Low Salt Water Injection Modeling

Authors: H. Vahdani

Abstract:

By the adsorption of polar compounds and/or the deposition of organic material, the wettability of originally water-wet reservoir rock can be altered. The degree of alteration is determined by the interaction of the oil constituents, the mineral surface, and the brine chemistry. Recently improving oil recovery by tuning wettability alteration is believed as a new recovery method. Various researchers have demonstrated that low salt water injection has a significant impact on oil recovery. It has been shown, for instance, that additional oil can be produced from reservoir rock by managing the injection water. Large wettability sensitivity has been observed, indicating that the oil/water capillary pressure profiles play a major role during low saline water injection simulation. Although the exact physics on how this alteration occurs is still a research topic; however, it has been reported that some of its effect can be captured by a relative permeability shift from an oil-wet system to a water-wet system. Modeling of low salt water injection mainly is based on the theory of wettability alteration and is hence strongly dependent on the wettability of the reservoir. In this article, combination of different wettabilities has been simulated and it is observed that the highest recoveries were from the cases were the reservoir initially was water-wet, and the lowest recoveries was from the cases were the reservoir initially was considered oil-wet. However for the cases where the reservoir initially was oil-wet, the effect of low-salinity waterflooding was the largest.

Keywords: low salt water injection, wettability alteration, modelling, relative permeability

Procedia PDF Downloads 494
8419 Silver Nanoparticles in Drinking Water Purification

Authors: S. Pooja Pragati, B. Sudarsan, S. Rajkumar

Abstract:

Silver nanoparticles (AgNP) are known for their excellent antimicrobial agents, and thus can be used as alternative disinfectant agents. However, released silver nanoparticles is a threat to naturally occurring microorganisms. This paper exhibits information on the environmental fate, toxicological effects, and application of AgNP and the current estimate on the physicochemical and antimicrobial properties of AgNP in different aqueous solutions, as well as their application as alternative disinfectants in water-treatment systems. It also gives a better approximation and experimental data of AgNP’s antimicrobial properties at different water chemistry conditions. A saturation-type fitting curve was established, showing the survival of bacteria under different water chemistry conditions as a function of the size of the nanoparticles. The results obtained show that silver nanoparticles in surface water, ground water, and brackish water are stable. The paper demonstrates the comparative study of AgNP-impregnated point-of-use ceramic water filters and ceramic filters impregnated with silver nitrate. It is observed that AgNP-impregnated ceramic water filters are more appropriate for this application due to the lesser amount of silver desorbed. Experimental data of the comparison of a polymer-based quaternary amine functionalized silsesquioxanes compound and AgNP are also tabulated and conclusions are analysed with the goal of optimizing. The simplicity of synthesis and application of Silver nanoparticles enables us to consider its effective modified version for the purification of water.

Keywords: disinfectant agent, purification of water, nano particles, water treatment

Procedia PDF Downloads 337
8418 Evaluating Water Quality Index of Euphrates River South-West Part of Iraq, Najaf, Alhadaria by Using GIS Technique

Authors: Ali Abojassim, Nabeel Kadhim, Adil Jaber, Ali Hussein

Abstract:

Water quality index (WQI) is valuable and unique rating to depict the total water quality status in a single term that is helpful for the selection of appropriate treatment technique to meet the concerned issues. Fifteen surface water samples were collected from the Euphrates river within AlHaydria is sub district of AL-Najaf (Iraq). The quality of surface water were evaluated by testing various physicochemical parameters such as pH, Total Dissolved Solid (TDS), , Calcium, Chloride, Sulphate and Electrical conductivity. The WQI for all samples were found in the range of 25.92 to 47.22. The highest value of WQI was observed in the Ali Hajj Hassan(SW4,SW8), El Haj Abdel Sayed (SW 10 to SW 12)and Hasan alsab(SW 14) sampling locations. Most of the water samples within study area were found good to moderate categories. most of the water samples for study area were found good as well as moderate categories

Keywords: water quality index, GIS, physicochemical parameters, Iraq Standards for irrigation purpose 2012

Procedia PDF Downloads 157
8417 Physiochemical Parameters Assessment and Evaluation of the Quality of Drinking Water in Some Parts of Lagos State

Authors: G. T. Mudashiru, Mayowa P. Ibitola

Abstract:

Investigation was carried out at Ikorodu North local council development area of Lagos state using physiochemical parameters to study the quality drinking water. It was ascertained that the human functions and activities were dependent on the continuous and availability of good drinking water. Six water samples were collected at six different boreholes from various outlets and homes in Ikorodu North local council development area. Lagos state Nigeria. Analysis was carried out to determine the purity of water for domestic use. Physicochemical properties evaluation was adapted using standard chemical methods. A number of parameters such as PH, turbidity, conductivity, total dissolved solids, color, chloride, sulphate, nitrate, hardness were determined. Heavy metals such as Zn, Mg, Fe, Pb, Hg, and Mn as well as total coliform counts were observed. The resulted values of each parameter were justified with World Health Organization (WHO) and Lagos state water regulatory commission LSWRC standard values for quantitative comparison. The result reveals that all the water had pH value well below the WHO maximum permissible level for potable water. Other physicochemical parameters were within the safe limit of WHO standard showing the portability nature of the water. It can be concluded that though the water is potable, there should be a kind of treatment of the water before consumption to prevent outbreak of diseases.

Keywords: drinking water, physiology, boreholes, heavy metals, domestic

Procedia PDF Downloads 220
8416 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 86
8415 Evaluation of Fluoride Contents of Kirkuk City's Drinking Water and Its Source: Lesser Zab River and Its Effect on Human Health

Authors: Abbas R. Ali, Safa H. Abdulrahman

Abstract:

In this study, forty samples had been collected from water of Lesser Zab River and drinking water to determine fluoride concentration and show the impact of fluoride on general health of society of Kirkuk city. Estimation of fluoride concentration and determination of its proportion in water samples were performed attentively using a fluoride ion selective electrode. The fluoride concentrations in the Lesser Zab River samples were between 0.0265 ppm and 0.0863 ppm with an average of 0.0451 ppm, whereas the average fluoride concentration in drinking water samples was 0.102 ppm and ranged from 0.010 to 0.289 ppm. A comparison between results obtained with World Health Organization (WHO) show a low concentration of fluoride in the samples of the study. Thus, for health concerns we should increase the concentration of this ion in water of Kirkuk city at least to about (1.0 ppm) and this will take place after fluorination process.

Keywords: fluoride concentration, lesser zab river, drinking water, health society, Kirkuk city

Procedia PDF Downloads 371
8414 Numerical Investigation of the Flow Characteristics inside the Scrubber Unit

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Wet scrubbers have found widespread use in cleaning contaminated gas streams because of their ability to remove particulates and based on the applications of scrubbing of marine engine exhaust gases by spraying sea-water. In order to examine the flow characteristics inside the scrubber, the model is designated with flow properties of hot air and water sprayer. The flow dynamics of evaporation of hot air by the injection of water droplets is the key factor considered in this paper. The flow behavior inside the scrubber was investigated from the previous works and to sum up the evaporation rate with respect to the concentration of water droplets are predicted to bring out the competent modelling. The numerical analysis using CFD facilitates in understanding the problem better and empathies the behavior of the model over its entire operating envelope.

Keywords: concentration of water droplets, evaporation rate, scrubber, water sprayer

Procedia PDF Downloads 217
8413 An Economic Analysis of Bottled Drinking Water Industry in India

Authors: Swadhin Mondal

Abstract:

While safe drinking water is an effective defense against the infection of water borne diseases, a large number of populations suffering from these diseases do not have access to safe drinking water due inadequacy of supply. Private entrepreneurs entered this sector and made bottled drinking water available by supplying various kinds of bottled water. In this study we found that the bottled drinking water industry has experienced a spectacular growth over the past two decades and it has a huge growth potential because of rising demand for safe drinking. High profit margin (217 %) is the main attraction to the entrepreneur to invest in this industry. Health awareness, lack of safe drinking water facilities, rising income, urbanization, migration and rising trend in tourism industries are the major influencing factors of demand for bottled drinking water (BDW). This industry also partially fulfills the demand for drinking water. More than 2 percent of household’s demands were met by this industry and many more households (additional 4 percent) coping with BDW during water crisis. Poor households spend around 4 percent of their total monthly household’s consumption expenditure on BDW which may have an adverse impact on household because households could have spent this for purchasing other goods. Like other developed counties, a large section of Indian households are shifting from their traditional sources of water to BDW. However, there are some concerns about the quality of BDW. Many cases, BDW contains chemical toxins at more than permissible level that can be harmful for health. Hence, there is an urgent need for appropriate intervention to regulate price, reduce potential harm and improve the quality of water provided by this industry.

Keywords: drinking water, public health public failure, privatization, development, public policy

Procedia PDF Downloads 334
8412 A Soil Stabilization Technique on Apa-Hotamiş Conveyance Channel

Authors: Ali Sinan Soğancı

Abstract:

Apa-Hotamış conveyance channel is located within in the boundaries of Konya Regional Directorate of Water Works. This channel transfers the water to the fount of Apa Dam with 17 km length of Blue Channel. Then the water is transmitted with Apa- Hotamış conveyance channel to Hotamış Water Storage. In some places along the Apa-Hotamış conveyance canal which will be constructed by Directorate of Water Works of Konya, some swelling soils have been seen. The samples taken from these places have 35-95 kPa swelling pressure. To prevent the swelling pressure arising from the penetration of water to the concrete channel, it was proposed to make 10 cm concrete coating by spreading the geomembrane and geotextile between the soil and concrete. In this way, the pressure (35-95 kPa) caused by the swelling and cracking of concrete failure will be blocked.

Keywords: conveyance channel, swelling pressure, geomembrane, geotextile, concrete

Procedia PDF Downloads 412
8411 Water Scarcity in the Gomti Nagar Area under the Impact of Climate Changes and Assessment for Groundwater Management

Authors: Rajkumar Ghosh

Abstract:

Climate change has led to decreased water availability in the Gomti Nagar area of Uttar Pradesh, India. Climate change has reduced the amount of precipitation and increased the rate of evaporation. The region is heavily reliant on surface water sources (Gomti river, Sharda Canal) and groundwater. Efficient management of groundwater resources is crucial for addressing water shortages. These may include: Exploring alternative water sources, such as wastewater recycling and desalination, can help augment water supply and reduce dependency on rainfall-dependent sources. Promoting the use of water-efficient technologies in industries, agriculture, and water-efficient infrastructure in urban areas can contribute to reducing water demand and optimizing water use. Incorporating climate change considerations into urban planning and infrastructure development can help ensure water security in the face of future climate uncertainties. Addressing water scarcity in the Gomti Nagar area requires a multi-pronged approach that combines sustainable groundwater management practices, climate change adaptation strategies, and integrated water resource management. By implementing these measures, the region can work towards ensuring a more sustainable and reliable water supply in the context of climate change. Water is the most important natural resource for the existence of living beings in the Earth's ecosystem. On Earth, 1.2 percent of the water is drinkable, but only 0.3 percent is usable by people. Water scarcity is a growing concern in India due to the impact of climate change and over-exploitation of water resources. Excess groundwater withdrawal causes regular declines in groundwater level. Due to city boundary expansion and growing urbanization, the recharge point for groundwater tables is decreasing. Rainwater infiltration into the subsoil is also reduced by unplanned, uneven settlements in urban change.

Keywords: climate change, water scarcity, groundwater, rainfall, water supply

Procedia PDF Downloads 83
8410 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts

Authors: Akhila Potluru

Abstract:

Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.

Keywords: artificial intelligence, machine learning, transboundary water conflict, water management

Procedia PDF Downloads 105
8409 Training Programmes at KwaZulu Natal, South Africa for Water Professionals to Enhance Water Management

Authors: Joshua Ikpimi, Dimeji Abe, Nonso Okoye, Gideon Ikpimi, Prince Idemudia

Abstract:

Training programmes are integral parts of development for employees to develop themselves and also to develop the organisation. Lack of training and inadequate training adversely affect the productivity in any organisation. Lack of training in the water sector can impair development and improper management of water. Training programs are given to water professionals, especially in a developing country like South Africa, to perform well in their day to day activities. The aim of this study was to evaluate the current training program in place for water professionals at KwaZulu Natal province of South Africa. The objectives were to determine the training programs that are suitable for their job descriptions and to determine the gaps with the training programs and to make recommendations on ways to improve the training programs. This study is a quantitative study which enabled an evaluation of training programs for KwaZulu Natal water professionals. The sample population was 120 professionals across all the cities and towns in KwaZulu Natal province. The water professionals were evaluated using structured questionnaire distributed to the respondents from September to December 2017. The data was analysed using R software. The study found that province has training programs that are valuable for their water professionals. However, involvement of some professionals in administrative activities was hindered by some inappropriate training. Many areas of improvement are suggested to the province in training its water professionals. Training was found to improve performance, commitment, motivation and staff retention of water professionals in the province.

Keywords: KwaZulu Natal, performance, training, water

Procedia PDF Downloads 189
8408 Assessment of Heavy Metals and Radionuclide Concentrations in Mafikeng Waste Water Treatment Plant

Authors: M. Mathuthu, N. N. Gaxela, R. Y. Olobatoke

Abstract:

A study was carried out to assess the heavy metal and radionuclide concentrations of water from the waste water treatment plant in Mafikeng Local Municipality to evaluate treatment efficiency. Ten water samples were collected from various stages of water treatment which included sewage delivered to the plant, the two treatment stages and the effluent and also the community. The samples were analyzed for heavy metal content using Inductive Coupled Plasma Mass Spectrometer. Gross α/β activity concentration in water samples was evaluated by Liquid Scintillation Counting whereas the concentration of individual radionuclides was measured by gamma spectroscopy. The results showed marked reduction in the levels of heavy metal concentration from 3 µg/L (As)–670 µg/L (Na) in sewage into the plant to 2 µg/L (As)–170 µg/L (Fe) in the effluent. Beta activity was not detected in water samples except in the in-coming sewage, the concentration of which was within reference limits. However, the gross α activity in all the water samples (7.7-8.02 Bq/L) exceeded the 0.1 Bq/L limit set by World Health Organization (WHO). Gamma spectroscopy analysis revealed very high concentrations of 235U and 226Ra in water samples, with the lowest concentrations (9.35 and 5.44 Bq/L respectively) in the in-coming sewage and highest concentrations (73.8 and 47 Bq/L respectively) in the community water suggesting contamination along water processing line. All the values were considerably higher than the limits of South Africa Target Water Quality Range and WHO. However, the estimated total doses of the two radionuclides for the analyzed water samples (10.62 - 45.40 µSv yr-1) were all well below the reference level of the committed effective dose of 100 µSv yr-1 recommended by WHO.

Keywords: gross α/β activity, heavy metals, radionuclides, 235U, 226Ra, water sample

Procedia PDF Downloads 448
8407 A Soft System Methodology Approach to Stakeholder Engagement in Water Sensitive Urban Design

Authors: Lina Lukusa, Ulrike Rivett

Abstract:

Poor water management can increase the extreme pressure already faced by water scarcity. Unless water management is addressed holistically, water quality and quantity will continue to degrade. A holistic approach to water management named Water Sensitive Urban Design (WSUD) has thus been created to facilitate the effective management of water. Traditionally, water management has employed a linear design approach, while WSUD requires a systematic, cyclical approach. In simple terms, WSUD assumes that everything is connected. Hence, it is critical for different stakeholders involved in WSUD to engage and reach a consensus on a solution. However, many stakeholders in WSUD have conflicting interests. Using the soft system methodology (SSM), developed by Peter Checkland, as a problem-solving method, decision-makers can understand this problematic situation from different world views. The SSM addresses ill and complex challenging situations involving human activities in a complex structured scenario. This paper demonstrates how SSM can be applied to understand the complexity of stakeholder engagement in WSUD. The paper concludes that SSM is an adequate solution to understand a complex problem better and then propose efficient solutions.

Keywords: co-design, ICT platform, soft systems methodology, water sensitive urban design

Procedia PDF Downloads 121
8406 Surface and Drinking Water Quality Monitoring of Thomas Reservoir, Kano State, Nigeria

Authors: G. A. Adamu, M. S. Sallau, S. O. Idris, E. B. Agbaji

Abstract:

Drinking water is supplied to Danbatta, Makoda and some parts of Minjibir local government areas of Kano State from the surface water of Thomas Reservoir. The present land use in the catchment area of the reservoir indicates high agricultural activities, fishing, as well as domestic and small scale industrial activities. To study and monitor the quality of surface and drinking water of the area, water samples were collected from the reservoir, treated water at the treatment plant and potable water at the consumer end in three seasons November - February (cold season), March - June (dry season) and July - September (rainy season). The samples were analyzed for physical and chemical parameters, pH, temperature, total dissolved solids (TDS), conductivity, turbidity, total hardness, suspended solids, total solids, colour, dissolved oxygen (DO), biological oxygen demand (BOD), chloride ion (Cl-) nitrite (NO2-), nitrate (NO3-), chemical oxygen demand (COD) and phosphate (PO43-). The higher values obtained in some parameters with respect to the acceptable standard set by World Health Organization (WHO) and Nigerian Industrial Standards (NIS) indicate the pollution of both the surface and drinking water. These pollutants were observed to have a negative impact on water quality in terms of eutrophication, largely due to anthropogenic activities in the watershed.

Keywords: surface water, drinking water, water quality, pollution, Thomas reservoir, Kano

Procedia PDF Downloads 295
8405 Investigating Al₂O₃ Nanofluid Based on Seawater and Effluent Water Mix for Water Injection Application; Sandstone

Authors: Meshal Al-Samhan, Abdullah Al-Marshed

Abstract:

Recently, there has been a tremendous increase in interest in nanotechnology applications and nanomaterials in the oilfield. In the last decade, the global increase in oil production resulted in large amounts of produced water, causing a significant problem for all producing countries and companies. This produced water deserves special attention and a study of its characteristics to understand and determine how it can be treated and later used for suitable applications such as water injection for Enhance Oil Recovery (EOR) without harming the environment. This work aims to investigate the prepared compatible mixed water (seawater and effluent water) response to nanoparticles for EOR water injection. The evaluation of different mix seawater/effluent water ratios (60/40,70/30) for their characteristics prior to nanofluid preparation using Inductive Couple Plasma (ICP) analysis, potential zeta test, and OLI software (the OLI Systems is a recognised leader in aqueous chemistry). This step of the work revealed the suitability of the water mix with a lower effluent-water ratio. Also, OLI predicted that the 60:40 mix needs to be balanced around temperatures of 70 ºC to avoid the mass accumulation of calcium sulfate and strontium sulfate. Later the prepared nanofluid was tested for interfacial tension (IFT) and wettability restoration in the sandstone rock; the Al2O3 nanofluid at 0.06 wt% concentration reduced the IFT by more than 16% with moderate water wet contact angle. The study concluded that the selected nanoparticle Al2O3 had demonstrated excellent performance in decreasing the interfacial tension with respect to the selected water mix type (60/40) at low nanoparticles wt%.

Keywords: nano AL2O3, sanstone, nanofluid, IFT, wettability

Procedia PDF Downloads 108
8404 Non-Revenue Water Management in Palestine

Authors: Samah Jawad Jabari

Abstract:

Water is the most important and valuable resource not only for human life but also for all living things on the planet. The water supply utilities should fulfill the water requirement quantitatively and qualitatively. Drinking water systems are exposed to both natural (hurricanes and flood) and manmade hazards (risks) that are common in Palestine. Non-Revenue Water (NRW) is a manmade risk which remains a major concern in Palestine, as the NRW levels are estimated to be at a high level. In this research, Hebron city water distribution network was taken as a case study to estimate and audit the NRW levels. The research also investigated the state of the existing water distribution system in the study area by investigating the water losses and obtained more information on NRW prevention and management practices. Data and information have been collected from the Palestinian Water Authority (PWA) and Hebron Municipality (HM) archive. In addition to that, a questionnaire has been designed and administered by the researcher in order to collect the necessary data for water auditing. The questionnaire also assessed the views of stakeholder in PWA and HM (staff) on the current status of the NRW in the Hebron water distribution system. The important result obtained by this research shows that NRW in Hebron city was high and in excess of 30%. The main factors that contribute to NRW were the inaccuracies in billing volumes, unauthorized consumption, and the method of estimating consumptions through faulty meters. Policy for NRW reduction is available in Palestine; however, it is clear that the number of qualified staff available to carry out the activities related to leak detection is low, and that there is a lack of appropriate technologies to reduce water losses and undertake sufficient system maintenance, which needs to be improved to enhance the performance of the network and decrease the level of NRW losses.

Keywords: non-revenue water, water auditing, leak detection, water meters

Procedia PDF Downloads 298
8403 The Impact of Water Resources on Economic and Social Development in Kuwait

Authors: Obaid Alotaibi

Abstract:

The geographical location of the State of Kuwait contributed significantly to the suffering of Kuwait in the past, due to the scarcity of natural water resources and the inability of the State's financial resources to provide other water resources to meet the needs of the population. The problem of water scarcity in Kuwait remained until the beginning of the second half of the twentieth century, as the country's economic conditions revived with the emergence and export of oil; which was clearly reflected in the steady growth of the population. To cope with this population, increase, it was necessary to expand the various development programs to include all sectors of the state. The process of development and urbanization could not start without finding solutions to the problem of water shortage in Kuwait. The only option for officials to meet the needs of the population and the different sectors of water development is the desalination of seawater. This process necessitated the establishment of six desalination plants along the coast of Kuwait and extended freshwater arteries to reach everywhere on the land. However, this does not mean that the problem of water shortage has been completely solved. The desalination plants are not meeting the country's future water needs, especially considering the increasing population growth. These stations are nearing completion and they need to be replaced, renovation and maintenance, require significant expenses. Therefore, it was necessary for scientific research to address the issue of water in Kuwait, whether in the field of development of existing resources or in the field of rationalization of consumption and protection of available resources. The study focused on how to address the increasing demand for water resulting from population increase, the impact of water on economic and social development, the prospects of water resources in Kuwait and its ability to meet the needs of the country by 2030.

Keywords: economic, development, Kuwait, social, water resources

Procedia PDF Downloads 127
8402 Negative Pressures of Ca. -20 MPA for Water Enclosed into a Metal Berthelot Tube under a Vacuum Condition

Authors: K. Hiro, Y. Imai, M. Tanji, H. Deguchi, K. Hatari

Abstract:

Negative pressures of liquids have been expected to contribute many kinds of technology. Nevertheless, experiments for subjecting liquids which have not too small volumes to negative pressures are difficult even now. The reason of the difficulties is because the liquids tend to generate cavities easily. In order to remove cavitation nuclei, an apparatus for enclosing water into a metal Berthelot tube under vacuum conditions was developed. By using the apparatus, negative pressures for water rose to ca. -20 MPa. This is the highest value for water in metal Berthelot tubes. Results were explained by a traditional crevice model. Keywords

Keywords: Berthelot method, negative pressure, cavitation nuclei, water

Procedia PDF Downloads 333
8401 Irrigation Scheduling for Wheat in Bangladesh under Water Stress Conditions Using Water Productivity Model

Authors: S. M. T. Mustafa, D. Raes, M. Huysmans

Abstract:

Proper utilization of water resource is very important in agro-based Bangladesh. Irrigation schedule based on local environmental conditions, soil type and water availability will allow a sustainable use of water resources in agriculture. In this study, the FAO crop water model (AquaCrop) was used to simulate the different water and fertilizer management strategies in different location of Bangladesh to obtain a management guideline for the farmer. Model was calibrated and validated for wheat (Triticum aestivum L.). The statistical indices between the observed and simulated grain yields obtained were very good with R2, RMSE, and EF values of 0.92, 0.33, and 0.83, respectively for model calibration and 0.92, 0.68 and 0.77, respectively for model validations. Stem elongation (jointing) to booting and flowering stage were identified as most water sensitive for wheat. Deficit irrigation on water sensitive stage could increase the grain yield for increasing soil fertility levels both for loamy and sandy type soils. Deficit irrigation strategies provides higher water productivity than full irrigation strategies and increase the yield stability (reduce the standard deviation). The practical deficit irrigation schedule for wheat for four different stations and two different soils were designed. Farmer can produce more crops by using deficit irrigation schedule under water stress condition. Practical application and validation of proposed strategies will make them more credible.

Keywords: crop-water model, deficit irrigation, irrigation scheduling, wheat

Procedia PDF Downloads 431
8400 Survey of Corrosion and Scaling of Urban Drinking Water Supply Reservoirs (Case Study: Ilam City)

Authors: Ehsan Derikvand, Hamid Kaykha, Rooholah Mansoori Yekta, Taleb Javanmard, Mohsen Mehdi Zadeh

Abstract:

Corrosion and scaling are one of the most complicated and costly problems of drinking water supply. Corrosion has adverse effect on general health and public acceptance of water source and drinking water supply costs. The present study aimed to determine the potentials of corrosion and scaling of potable water supply reservoirs of Ilam city in June 2013 and August 2014 by Langelier Index (LI) and Reynar. The results of experiments and calculations show that the mean index of LSI in the first and second sampling stages is 0.34, 0.2, respectively and the mean index RSI in the first and second stages of sampling is 7.15 and 7.22, respectively. Based on LSI index of reservoirs water in the first phase, none of stations are corrosive and only one station in the second sampling phase has corrosive tendency. According to RSI index, there is no corrosive tendency in two phases. Based on the results, the water of drinking water reservoirs in Ilam city has no corrosion tendency and the analyses and results of Langelier Index (LI) and Ryznar are in relatively good condition.

Keywords: corrosion, scaling, water reservoirs, langelier and ryznar indices, Ilam city

Procedia PDF Downloads 409
8399 Investigation of Correlation Between Radon Concentration and Metals in Produced Water from Oilfield Activities

Authors: Nacer Hamza

Abstract:

Naturally radiation exposure that present due to the cosmic ray or the naturel occurring radioactives materials(NORMs) that originated in the earth's crust and are present everywhere in the environment(1) , a significant concentration of NORMs reported in the produced water which comes out during the oil extraction process, so that the management of this produced water is a challenge for oil and gas companies which include either minimization of produced water which considered as the best way in the term of environment based in the fact that ,the lower water produced the lower cost in treating this water , recycling and reuse by reinjected produced water that fulfills some requirements to enhance oil recovery or disposal in the case that the produced water cannot be minimize or reuse. In the purpose of produced water management, the investigation of NORMs activity concentration present in it considered as the main step for more understanding of the radionuclide’s distribution. Many studies reported the present of NORMs in produced water and investigated the correlation between 〖Ra〗^226and the different metals present in produced water(2) including Cations and anions〖Na〗^+,〖Cl〗^-, 〖Fe〗^(2+), 〖Ca〗^(2+) . and lead, nickel, zinc, cadmium, and copper commonly exist as heavy metal in oil and gas field produced water(3). However, there are no real interesting to investigate the correlation between 〖Rn〗^222and the different metals exist in produced water. methods using, in first to measure the radon concentration activity in produced water samples is a RAD7 .RAD7 is a radiometer instrument based on the solid state detectors(4) which is a type of semi-conductor detector for alpha particles emitting from Rn and their progenies, in second the concentration of different metals presents in produced water measure using an atomic absorption spectrometry AAS. Then to investigate the correlation between the 〖Rn〗^222concentration activity and the metals concentration in produced water a statistical method is Pearson correlation analysis which based in the correlation coefficient obtained between the 〖Rn〗^222 and metals. Such investigation is important to more understanding how the radionuclides act in produced water based on this correlation with metals , in first due to the fact that 〖Rn〗^222decays through the sequence 〖Po〗^218, 〖Pb〗^214, 〖Bi〗^214, 〖Po〗^214, and〖Pb〗^210, those daughters are metals thus they will precipitate with metals present in produced water, secondly the short half-life of 〖Rn〗^222 (3.82 days) lead to faster precipitation of its progenies with metals in produced water.

Keywords: norms, radon concentration, produced water, heavy metals

Procedia PDF Downloads 147