Search results for: arch bridge foundation
2017 The Persistent English Language Gap between the Direct Entry and Foundation Program University Students: Empirical Evidence from the UAE
Authors: Eda Orhun
Abstract:
This paper studies the IELTS exit scores of Emirati university students before graduation and specifically compares the IELTS exit performance of the English foundation program (FP) students to direct entry (DE) students. Direct entry (DE) students are the students who were able to directly start with the undergraduate program without the need to attend English foundation program courses as they were able to prove a sufficient level of English at the university admittance. The results clearly show that the gap that existed already between these two groups of students at the start does not seem to disappear at the end of university studies, as DE students’ IELTS exit scores are significantly higher compared to FP students. Further work of a regression analysis exhibits that GPA and CMATH scores do have a positive and significant effect on IELTS exit scores. In addition, while the College of Education students are found to have the lowest performance in every sub-section of the IELTS exam across colleges, students of the College of Humanities and Social Sciences and the College of Natural and Health Sciences seem to have the best reading skills. Another important determinant of IELTS exit scores is found to be the English level of students at inception. With these results, the study offers important policy implications regarding the public education system of the UAE and sheds light on the main roots of the problem.Keywords: English proficiency, higher education, IELTS exit scores, English foundation program, United Arab Emirates
Procedia PDF Downloads 982016 Optimum Design of Piled-Raft Systems
Authors: Alaa Chasib Ghaleb, Muntadher M. Abbood
Abstract:
This paper presents a study of the problem of the optimum design of piled-raft foundation systems. The study has been carried out using a hypothetic problem and soil investigations of six sites locations in Basrah city to evaluate the adequacy of using the piled-raft foundation concept. Three dimensional finite element analysis method has been used, to perform the structural analysis. The problem is optimized using Hooke and Jeeves method with the total weight of the foundation as objective function and each of raft thickness, piles length, number of piles and piles diameter as design variables. It is found that the total and differential settlement decreases with increasing the raft thickness, the number of piles, the piles length, and the piles diameter. Finally parametric study for load values, load type and raft dimensions have been studied and the results have been discussed.Keywords: Hooke and Jeeves, optimum design, piled-raft, foundations
Procedia PDF Downloads 2282015 Damage-Based Seismic Design and Evaluation of Reinforced Concrete Bridges
Authors: Ping-Hsiung Wang, Kuo-Chun Chang
Abstract:
There has been a common trend worldwide in the seismic design and evaluation of bridges towards the performance-based method where the lateral displacement or the displacement ductility of bridge column is regarded as an important indicator for performance assessment. However, the seismic response of a bridge to an earthquake is a combined result of cyclic displacements and accumulated energy dissipation, causing damage to the bridge, and hence the lateral displacement (ductility) alone is insufficient to tell its actual seismic performance. This study aims to propose a damage-based seismic design and evaluation method for reinforced concrete bridges on the basis of the newly developed capacity-based inelastic displacement spectra. The capacity-based inelastic displacement spectra that comprise an inelastic displacement ratio spectrum and a corresponding damage state spectrum was constructed by using a series of nonlinear time history analyses and a versatile, smooth hysteresis model. The smooth model could take into account the effects of various design parameters of RC bridge columns and correlates the column’s strength deterioration with the Park and Ang’s damage index. It was proved that the damage index not only can be used to accurately predict the onset of strength deterioration, but also can be a good indicator for assessing the actual visible damage condition of column regardless of its loading history (i.e., similar damage index corresponds to similar actual damage condition for the same designed columns subjected to very different cyclic loading protocols as well as earthquake loading), providing a better insight into the seismic performance of bridges. Besides, the computed spectra show that the inelastic displacement ratio for far-field ground motions approximately conforms to the equal displacement rule when structural period is larger than around 0.8 s, but that for near-fault ground motions departs from the rule in the whole considered spectral regions. Furthermore, the near-fault ground motions would lead to significantly greater inelastic displacement ratio and damage index than far-field ground motions and most of the practical design scenarios cannot survive the considered near-fault ground motion when the strength reduction factor of bridge is not less than 5.0. Finally, the spectrum formula is presented as a function of structural period, strength reduction factor, and various column design parameters for far-field and near-fault ground motions by means of the regression analysis of the computed spectra. And based on the developed spectrum formula, a design example of a bridge is presented to illustrate the proposed damage-based seismic design and evaluation method where the damage state of the bridge is used as the performance objective.Keywords: damage index, far-field, near-fault, reinforced concrete bridge, seismic design and evaluation
Procedia PDF Downloads 1282014 Numerical Simulation of Footing on Reinforced Loose Sand
Authors: M. L. Burnwal, P. Raychowdhury
Abstract:
Earthquake leads to adverse effects on buildings resting on soft soils. Mitigating the response of shallow foundations on soft soil with different methods reduces settlement and provides foundation stability. Few methods such as the rocking foundation (used in Performance-based design), deep foundation, prefabricated drain, grouting, and Vibro-compaction are used to control the pore pressure and enhance the strength of the loose soils. One of the problems with these methods is that the settlement is uncontrollable, leading to differential settlement of the footings, further leading to the collapse of buildings. The present study investigates the utility of geosynthetics as a potential improvement of the subsoil to reduce the earthquake-induced settlement of structures. A steel moment-resisting frame building resting on loose liquefiable dry soil, subjected to Uttarkashi 1991 and Chamba 1995 earthquakes, is used for the soil-structure interaction (SSI) analysis. The continuum model can simultaneously simulate structure, soil, interfaces, and geogrids in the OpenSees framework. Soil is modeled with PressureDependentMultiYield (PDMY) material models with Quad element that provides stress-strain at gauss points and is calibrated to predict the behavior of Ganga sand. The model analyzed with a tied degree of freedom contact reveals that the system responses align with the shake table experimental results. An attempt is made to study the responses of footing structure and geosynthetics with unreinforced and reinforced bases with varying parameters. The result shows that geogrid reinforces shallow foundation effectively reduces the settlement by 60%.Keywords: settlement, shallow foundation, SSI, continuum FEM
Procedia PDF Downloads 1982013 Testing Method of Soil Failure Pattern of Sand Type as an Effort to Minimize the Impact of the Earthquake
Authors: Luthfi Assholam Solamat
Abstract:
Nowadays many people do not know the soil failure pattern as an important part in planning the under structure caused by the loading occurs. This is because the soil is located under the foundation, so it cannot be seen directly. Based on this study, the idea occurs to do a study for testing the soil failure pattern, especially the type of sand soil under the foundation. The necessity of doing this to the design of building structures on the land which is the initial part of the foundation structure that met with waves/vibrations during an earthquake. If the underground structure is not strong it is feared the building thereon more vulnerable to the risk of building damage. This research focuses on the search of soil failure pattern, which the most applicable in the field with the loading periodic re-testing of a particular time with the help of the integrated video visual observations performed. The results could be useful for planning under the structure in an effort to try the upper structure is minimal risk of the earthquake.Keywords: soil failure pattern, earthquake, under structure, sand soil testing method
Procedia PDF Downloads 3652012 Sustainable Upgrade of Existing Heritage Infrastructure - Strengthening and Rehabilitation of The LH Ford Bridge
Authors: Vince Scolaro, Lakshman Prasad, Ted Polley, Sanjivan Deshpande
Abstract:
The LH Ford Bridge, built in the 1960s, comprises 28 spans, is 800m long and crosses the Macquarie River at Dubbo, NSW. The main bridge spans comprise three spans with a 63m center span (25m drop-in section) supported by halving joints from the main cantilevers and back spans of 28m. The main bridge spans were built using complex construction staging (the first of this type in NSW). They comprise twin precast boxes, in-situ reinforced concrete infills, and cantilevered outriggers stressed both longitudinally and transversely. Since construction, this bridge has undergone significantly increased design vehicle loads and showed signs of excessive shrinkage and creep leading to significant sagging of the centre span with evidence of previous failure and remediation of the halving joints. A comprehensive load rating assessment was undertaken taking account of the original complex construction staging. Deficiencies identified included inadequate capacity of the halving joints, failure of the bearings at the halving joints, inadequate shear capacity of the girder webs and inadequate girder flexural capacity to carry B-Double design vehicles. A unique strengthening system comprising two new piers (under each of the halving joints), new bearings and installation of external prestressing to the soffit of both drop-in-span and back spans was adopted. A portion of the dead load had to be transferred from the superstructure to the new piers via innovative soft/stiff bearing combinations to reduce new locked-in stresses resulting from the new pier supports. Significant temporary works comprised a precast concrete shell beam forming the pile cap/pier structure, addition of a temporary suspended scaffold (without overstressing the existing superstructure) and the installation of jacking stays for new bearing top and bottom plates. This paper presents how this existing historic and socially important bridge was strengthened and updated to increase its design life without the need for replacement.Keywords: strengthening, creep, construction, box girder
Procedia PDF Downloads 1432011 Effect of Size and Soil Characteristic on Contribution of Side and Tip Resistance of the Drilled Shafts Axial Load Carrying Capacity
Authors: Mehrak Zargaryaeghoubi, Masood Hajali
Abstract:
Drilled shafts are the most popular of deep foundations, because they have the capability that one single shaft can easily carry the entire load of a large column from a bridge or tall building. Drilled shaft may be an economical alternative to pile foundations because a pile cap is not needed, which not only reduces that expense, but also provides a rough surface in the border of soil and concrete to carry a more axial load. Due to the larger construction sizes of drilled shafts, they have an excellent axial load carrying capacity. Part of the axial load carrying capacity of the drilled shaft is resisted by the soil below the tip of the shaft which is tip resistance and the other part is resisted by the friction developed around the drilled shaft which is side resistance. The condition at the bottom of the excavation can affect the end bearing capacity of the drilled shaft. Also, type of the soil and size of the drilled shaft can affect the frictional resistance. The main loads applied on the drilled shafts are axial compressive loads. It is important to know how many percent of the maximum applied load will be shed inside friction and how much will be transferred to the base. The axial capacity of the drilled shaft foundation is influenced by the size of the drilled shaft, and soil characteristics. In this study, the effect of the size and soil characteristic will be investigated on the contribution of side resistance and end-bearing capacity. Also, the study presents a three-dimensional finite element modeling of a drilled shaft subjected to axial load using ANSYS. The top displacement and settlement of the drilled shaft are verified with analytical results. The soil profile is considered as Table 1 and for a drilled shaft with 7 ft diameter and 95 ft length the stresses in z-direction are calculated through the length of the shaft. From the stresses in z-direction through the length of the shaft the side resistance can be calculated and with the z-direction stress at the tip, the tip resistance can be calculated. The result of the side and tip resistance for this drilled shaft are compared with the analytical results.Keywords: Drilled Shaft Foundation, size and soil characteristic, axial load capacity, Finite Element
Procedia PDF Downloads 3852010 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling
Authors: Zhenyu Zhang, Hsi-Hsien Wei
Abstract:
Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime
Procedia PDF Downloads 1542009 Large-Scale Experimental and Numerical Studies on the Temperature Response of Main Cables and Suspenders in Bridge Fires
Authors: Shaokun Ge, Bart Merci, Fubao Zhou, Gao Liu, Ya Ni
Abstract:
This study investigates the thermal response of main cables and suspenders in suspension bridges subjected to vehicle fires, integrating large-scale gasoline pool fire experiments with numerical simulations. Focusing on a suspension bridge in China, the research examines the impact of wind speed, pool size, and lane position on flame dynamics and temperature distribution along the cables. The results indicate that higher wind speeds and larger pool sizes markedly increase the mass burning rate, causing flame deflection and non-uniform temperature distribution along the cables. Under a wind speed of 1.56 m/s, maximum temperatures reached approximately 960 ℃ near the base in emergency lane fires and 909 ℃ at 1.6 m height for slow lane fires, underscoring the heightened thermal risk from emergency lane fires. The study recommends a zoning strategy for cable fire protection, suggesting a 0-12.8 m protection zone with a target temperature of 1000 ℃ and a 12.8-20.8 m zone with a target temperature of 700 ℃, both with a 90-minute fire resistance. This approach, based on precise temperature distribution data from experimental and simulation results, provides a vital reference for the fire protection design of suspension bridge cables. Understanding cable temperature response during vehicle fires is crucial for developing fire protection systems, as it dictates necessary structural protection, fire resistance duration, and maximum temperatures for mitigation. Challenges of controlling environmental wind in large-scale fire tests are also addressed, along with a call for further research on fire behavior mechanisms and structural temperature response in cable-supported bridges under varying wind conditions. Conclusively, the proposed zoning strategy enhances the theoretical understanding of near-field temperature response in bridge fires, contributing significantly to the field by supporting the design of passive fire protection systems for bridge cables, safeguarding their integrity under extreme fire conditions.Keywords: bridge fire, temperature response, large-scale experiment, numerical simulations, fire protection
Procedia PDF Downloads 232008 Weight Regulation Mechanism on Bridges
Authors: S. Siddharth, Saravana Kumar
Abstract:
All Metros across the world tend to have a large number of bridges and there have been concerns about the safety of these bridges. As the traffic in most cities in India is heterogeneous, Trucks and Heavy vehicles traverse on our roads on an everyday basis this will lead to structural damage on the long run. All bridges are designed with a maximum Load limit and this limit is seldom checked. We have hence come up with an idea to check the load of all the vehicles entering the bridge and block the bridge with barricades if the vehicle surpasses the maximum load , this is done to catch hold of the perpetrators. By doing this we can avoid further structural damage and also provide an effective way to enforce the law. If our solution is put in place structural damage and accidents would be reduced to a great deal and it would also make the law enforcement job easier.Keywords: heterogeneous, structural, load, law, heavy, vehicles
Procedia PDF Downloads 4572007 Harnessing Nigeria's Forestry Potential for Structural Applications: Structural Reliability of Nigerian Grown Opepe Timber
Authors: J. I. Aguwa, S. Sadiku, M. Abdullahi
Abstract:
This study examined the structural reliability of the Nigerian grown Opepe timber as bridge beam material. The strength of a particular specie of timber depends so much on some factors such as soil and environment in which it is grown. The steps involved are collection of the Opepe timber samples, seasoning/preparation of the test specimens, determination of the strength properties/statistical analysis, development of a computer programme in FORTRAN language and finally structural reliability analysis using FORM 5 software. The result revealed that the Nigerian grown Opepe is a reliable and durable structural bridge beam material for span of 5000mm, depth of 400mm, breadth of 250mm and end bearing length of 150mm. The probabilities of failure in bending parallel to the grain, compression perpendicular to the grain, shear parallel to the grain and deflection are 1.61 x 10-7, 1.43 x 10-8, 1.93 x 10-4 and 1.51 x 10-15 respectively. The paper recommends establishment of Opepe plantation in various Local Government Areas in Nigeria for structural applications such as in bridges, railway sleepers, generation of income to the nation as well as creating employment for the numerous unemployed youths.Keywords: bending and deflection, bridge beam, compression, Nigerian Opepe, shear, structural reliability
Procedia PDF Downloads 4712006 High-Frequency Half Bridge Inverter Applied to Induction Heating
Authors: Amira Zouaoui, Hamed Belloumi, Ferid Kourda
Abstract:
This paper presents the analysis and design of a DC–AC resonant converter applied to induction heating. The proposed topology based on the series-parallel half-bridge resonant inverter is described. It can operate with Zero-Voltage Switching (ZVS). At the resonant frequency, the secondary current is amplified over the heating coil with small switching angle, which keeps the reactive power low and permits heating with small current through the resonant inductor and the transformer. The operation and control principle of the proposed high frequency inverter is described and verified through simulated and experimental results.Keywords: induction heating, inverter, high frequency, resonant
Procedia PDF Downloads 4672005 Formulation of a Rapid Earthquake Risk Ranking Criteria for National Bridges in the National Capital Region Affected by the West Valley Fault Using GIS Data Integration
Authors: George Mariano Soriano
Abstract:
In this study, a Rapid Earthquake Risk Ranking Criteria was formulated by integrating various existing maps and databases by the Department of Public Works and Highways (DPWH) and Philippine Institute of Volcanology and Seismology (PHIVOLCS). Utilizing Geographic Information System (GIS) software, the above-mentioned maps and databases were used in extracting seismic hazard parameters and bridge vulnerability characteristics in order to rank the seismic damage risk rating of bridges in the National Capital Region.Keywords: bridge, earthquake, GIS, hazard, risk, vulnerability
Procedia PDF Downloads 4152004 A Review on Medical Image Registration Techniques
Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry
Abstract:
This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.Keywords: image registration techniques, medical images, neural networks, optimisaztion, transformation
Procedia PDF Downloads 1862003 Diffusion of Social Innovation in Thai Community Enterprises
Authors: Thanisa Sirithaporn
Abstract:
The study aims to examine the diffusion of social innovation among Thai Community Enterprises in conjunction with a singular case study of a medium-sized corporation that has successfully transitioned from a charitable foundation to a sustainable, profitable entity creating value for both shareholders and the communities in which it operates. It seeks to bridge the gap between different streams of aligned research in the fields of diffusion, social innovation, and community enterprises into a more cohesive conceptual framework and thus to better understand the historical and current impediments that have resulted in so many enterprises failing to be sustainable. The methodology is mixed and dual phased. The initial quantitative phase uses a questionnaire as the main research instrument distributed among community enterprises throughout Thailand which will provide the themes for the qualitative phase through semi-structured interviews with key stakeholders at a commercial enterprise actively engaged in social innovation. The findings seek to present a more comprehensive conceptual framework and actionable guidelines to aid community enterprises to develop social innovation in a sustainable manner that creates value to its beneficiaries.Keywords: diffusion, community enterprises, social innovation, Thailand
Procedia PDF Downloads 1372002 Seismic Fragility Curves Methodologies for Bridges: A Review
Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani
Abstract:
As a part of the transportation network, bridges are one of the most vulnerable structures. In order to investigate the vulnerability and seismic evaluation of bridges performance, identifying of bridge associated with various state of damage is important. Fragility curves provide important data about damage states and performance of bridges against earthquakes. The development of vulnerability information in the form of fragility curves is a widely practiced approach when the information is to be developed accounting for a multitude of uncertain source involved. This paper presents the fragility curve methodologies for bridges and investigates the practice and applications relating to the seismic fragility assessment of bridges.Keywords: fragility curve, bridge, uncertainty, NLTHA, IDA
Procedia PDF Downloads 2872001 Corporate Foundation Giving and Female Labour Force Participation in Ghana
Authors: Shaibu Salifu, Ofori Boachie
Abstract:
Philanthropy is part and parcel of African identity; it is intrinsically embedded in the life of Africans where at any point in time people contribute to philanthropy through giving or receiving. Even though, research on corporate philanthropy has gained attention in the academic space of Ghana, little have been done on the effects of corporate foundation giving on female labour force participation in Ghana. We investigate the effects of corporate foundations giving on female labour force participation in Ghana. We applied convenient and purposive sampling techniques to collect qualitative data from thirty (30) women in Ghana through interviews and open-ended questionnaires. We used Nvivo to carryout analysis on the data and our results indicate that corporate foundation giving has significant effect on female labour force participation in Ghana. In addition, contrary to the feminization U-Shape Hypothesis, evidence suggest that, to a larger extent marriage and fertility (birth) of women positively contribute to the female labour force participation in Ghana. Nevertheless, the study was limited by the number of women who were interviewed, time constraints of women for elaborate discussions on the issues (constructs) of the study and fear of victimization by authorities on most of their responses to the interviews. The findings have implications for all stakeholders of philanthropy: academia, governments, civil society organizations, corporate foundations, women of Ghana and other relevant bodies.Keywords: corporate philanthropy, corporate foundations, corporate foundation giving, female labour force participation, women, Ghana
Procedia PDF Downloads 882000 Potential Risks of Using Disconnected Composite Foundation Systems in Active Seismic Zones
Authors: Mohamed ElMasry, Ahmad Ragheb, Tareq AbdelAziz, Mohamed Ghazy
Abstract:
Choosing the suitable infrastructure system is becoming more challenging with the increase in demand for heavier structures contemporarily. This is the case where piled raft foundations have been widely used around the world to support heavy structures without extensive settlement. In the latter system, piles are rigidly connected to the raft, and most of the load goes to the soil layer on which the piles are bearing. In spite of that, when soil profiles contain thicker soft clay layers near the surface, or at relatively shallow depths, it is unfavorable to use the rigid piled raft foundation system. Consequently, the disconnected piled raft system was introduced as an alternative approach for the rigidly connected system. In this system, piles are disconnected from the raft using a cushion of soil, mostly of a granular interlayer. The cushion is used to redistribute the stresses among the piles and the subsoil. Piles are also used to stiffen the subsoil, and by this way reduce the settlement without being rigidly connected to the raft. However, the seismic loading effect on such disconnected foundation systems remains a problem, since the soil profiles may include thick clay layers which raise risks of amplification of the dynamic earthquake loads. In this paper, the effects of seismic behavior on the connected and disconnected piled raft systems are studied through a numerical model using Midas GTS NX Software. The study concerns the soil-structure interaction and the expected behavior of the systems. Advantages and disadvantages of each foundation approach are studied, and a comparison between the results are presented to show the effects of using disconnected piled raft systems in highly seismic zones. This was done by showing the excitation amplification in each of the foundation systems.Keywords: soil-structure interaction, disconnected piled-raft, risks, seismic zones
Procedia PDF Downloads 2711999 Solution for Thick Plate Resting on Winkler Foundation by Symplectic Geometry Method
Authors: Mei-Jie Xu, Yang Zhong
Abstract:
Based on the symplectic geometry method, the theory of Hamilton system can be applied in the analysis of problem solved using the theory of elasticity and in the solution of elliptic partial differential equations. With this technique, this paper derives the theoretical solution for a thick rectangular plate with four free edges supported on a Winkler foundation by variable separation method. In this method, the governing equation of thick plate was first transformed into state equations in the Hamilton space. The theoretical solution of this problem was next obtained by applying the method of variable separation based on the Hamilton system. Compared with traditional theoretical solutions for rectangular plates, this method has the advantage of not having to assume the form of deflection functions in the solution process. Numerical examples are presented to verify the validity of the proposed solution method.Keywords: symplectic geometry method, Winkler foundation, thick rectangular plate, variable separation method, Hamilton system
Procedia PDF Downloads 3101998 Damages of Highway Bridges in Thailand during the 2014-Chiang Rai Earthquake
Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom
Abstract:
On May 5, 2014, an earthquake of magnitude 6.3 Richter hit the Northern part of Thailand. The epicenter was in Phan District, Chiang Rai Province. This earthquake or the so-called 2014-Chiang Rai Earthquake is the strongest ground shaking that Thailand has ever been experienced in her modern history. The 2014-Chiang Rai Earthquake confirms the geological evidence, which has previously been ignored by most engineers, that earthquakes of considerable magnitudes 6 to 7 Richter can occurr within the country. This promptly stimulates authorized agencies to pay more attention at the safety of their assets and promotes the comprehensive review of seismic resistance design of their building structures. The focus of this paper is to summarize the damages of highway bridges as a result of the 2014-Chiang Rai ground shaking, the remedy actions, and the research needs. The 2014-Chiang Rai Earthquake caused considerable damages to nearby structures such as houses, schools, and temples. The ground shaking, however, caused damage to only one highway bridge, Mae Laos Bridge, located several kilometers away from the epicenter. The damage of Mae Laos Bridge was in the form of concrete spalling caused by pounding of cap beam on the deck structure. The damage occurred only at the end or abutment span. The damage caused by pounding is not a surprise, but the pounding by only one bridge requires further investigation and discussion. Mae Laos Bridge is a river crossing bridge with relatively large approach structure. In as much, the approach structure is confined by strong retaining walls. This results in a rigid-like approach structure which vibrates at the acceleration approximately equal to the ground acceleration during the earthquake and exerts a huge force to the abutment causing the pounding of cap beam on the deck structure. Other bridges nearby have relatively small approach structures, and therefore have no capability to generate pounding. The effect of mass of the approach structure on pounding of cap beam on the deck structure is also evident by the damage of one pedestrian bridge in front of Thanthong Wittaya School located 50 meters from Mae Laos Bridge. The width of the approach stair of this bridge is wider than the typical one to accommodate the stream of students during pre- and post-school times. This results in a relatively large mass of the approach stair which in turn exerts a huge force to the pier causing pounding of cap beam on the deck structure during ground shaking. No sign of pounding was observed for a typical pedestrian bridge located at another end of Mae Laos Bridge. Although pounding of cap beam on the deck structure of the above mentioned bridges does not cause serious damage to bridge structure, this incident promotes the comprehensive review of seismic resistance design of highway bridges in Thailand. Given a proper mass and confinement of the approach structure, the pounding of cap beam on the deck structure can be easily excited even at the low to moderate ground shaking. In as much, if the ground shaking becomes stronger, the pounding is certainly more powerful. This may cause the deck structure to be unseated and fall off in the case of unrestrained bridge. For the bridge with restrainer between cap beam and the deck structure, the restrainer may prevent the deck structure from falling off. However, preventing free movement of the pier by the restrainer may damage the pier itself. Most highway bridges in Thailand have dowel bars embedded connecting cap beam and the deck structure. The purpose of the existence of dowel bars is, however, not intended for any seismic resistance. Their ability to prevent the deck structure from unseating and their effect on the potential damage of the pier should be evaluated. In response to this expected situation, Thailand Department of Highways (DOH) has set up a team to revise the standard practices for the seismic resistance design of highway bridges in Thailand. In addition, DOH has also funded the research project 'Seismic Resistance Evaluation of Pre- and Post-Design Modifications of DOH’s Bridges' with the scope of full-scale tests of single span bridges under reversed cyclic static loadings for both longitudinal and transverse directions and computer simulations to evaluate the seismic performance of the existing bridges and the design modification bridges. The research is expected to start in October, 2015.Keywords: earthquake, highway bridge, Thailand, damage, pounding, seismic resistance
Procedia PDF Downloads 2951997 Early Age Behavior of Wind Turbine Gravity Foundations
Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet
Abstract:
The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines
Procedia PDF Downloads 1791996 Vibration Frequency Analysis of Sandwich Nano-Plate on Visco Pasternak Foundation by Using Modified Couple Stress Theory
Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian
Abstract:
In this research, the free vibration of a rectangular sandwich nano-plate (SNP) made of three smart layers in the visco Pasternak foundation is studied. The core of the sandwich is a piezo magnetic nano-plate integrated with two layers of piezoelectric materials. First-order shear deformation plate theory is utilized to derive the motion equations by using Hamilton’s principle, piezoelectricity, and modified couple stress theory. Elastic medium is modeled by visco Pasternak foundation, where the damping coefficient effect is investigated on the stability of sandwich nano-plate. These equations are solved by the differential quadrature method (DQM), considering different boundary conditions. Results indicate the effect of various parameters such as aspect ratio, thickness ratio, shear correction factor, damping coefficient, and boundary conditions on the dimensionless frequency of sandwich nano-plate. The results are also compared by those available in the literature, and these findings can be used for automotive industry, communications equipment, active noise, stability, and vibration cancellation systems and utilized for designing the magnetostrictive actuator, motor, transducer and sensors in nano and micro smart structures.Keywords: free vibration, modified couple stress theory, sandwich nano-plate, visco Pasternak foundation
Procedia PDF Downloads 1441995 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads
Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan
Abstract:
In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.Keywords: elastic foundation, impact, moving load, thick plate
Procedia PDF Downloads 3191994 Improved Multilevel Inverter with Hybrid Power Selector and Solar Panel Cleaner in a Solar System
Authors: S. Oladoyinbo, A. A. Tijani
Abstract:
Multilevel inverters (MLI) are used at high power application based on their operation. There are 3 main types of multilevel inverters (MLI); diode clamped, flying capacitor and cascaded MLI. A cascaded MLI requires the least number of components to achieve same number of voltage levels when compared to other types of MLI while the flying capacitor has the minimum harmonic distortion. However, maximizing the advantage of cascaded H-bridge MLI and flying capacitor MLI, an improved MLI can be achieved with fewer components and better performance. In this paper an improved MLI is presented by asymmetrically integrating a flying capacitor to a cascaded H-bridge MLI also integrating an auxiliary transformer to the main transformer to decrease the total harmonics distortion (THD) with increased number of output voltage levels. Furthermore, the system is incorporated with a hybrid time and climate based solar panel cleaner and power selector which intelligently manage the input of the MLI and clean the solar panel weekly ensuring the environmental factor effect on the panel is reduced to minimum.Keywords: multilevel inverter, total harmonics distortion, cascaded h-bridge inverter, flying capacitor
Procedia PDF Downloads 3691993 The Effect of Finding and Development Costs and Gas Price on Basins in the Barnett Shale
Authors: Michael Kenomore, Mohamed Hassan, Amjad Shah, Hom Dhakal
Abstract:
Shale gas reservoirs have been of greater importance compared to shale oil reservoirs since 2009 and with the current nature of the oil market, understanding the technical and economic performance of shale gas reservoirs is of importance. Using the Barnett shale as a case study, an economic model was developed to quantify the effect of finding and development costs and gas prices on the basins in the Barnett shale using net present value as an evaluation parameter. A rate of return of 20% and a payback period of 60 months or less was used as the investment hurdle in the model. The Barnett was split into four basins (Strawn Basin, Ouachita Folded Belt, Forth-worth Syncline and Bend-arch Basin) with analysis conducted on each of the basin to provide a holistic outlook. The dataset consisted of only horizontal wells that started production from 2008 to at most 2015 with 1835 wells coming from the strawn basin, 137 wells from the Ouachita folded belt, 55 wells from the bend-arch basin and 724 wells from the forth-worth syncline. The data was analyzed initially on Microsoft Excel to determine the estimated ultimate recoverable (EUR). The range of EUR from each basin were loaded in the Palisade Risk software and a log normal distribution typical of Barnett shale wells was fitted to the dataset. Monte Carlo simulation was then carried out over a 1000 iterations to obtain a cumulative distribution plot showing the probabilistic distribution of EUR for each basin. From the cumulative distribution plot, the P10, P50 and P90 EUR values for each basin were used in the economic model. Gas production from an individual well with a EUR similar to the calculated EUR was chosen and rescaled to fit the calculated EUR values for each basin at the respective percentiles i.e. P10, P50 and P90. The rescaled production was entered into the economic model to determine the effect of the finding and development cost and gas price on the net present value (10% discount rate/year) as well as also determine the scenario that satisfied the proposed investment hurdle. The finding and development costs used in this paper (assumed to consist only of the drilling and completion costs) were £1 million, £2 million and £4 million while the gas price was varied from $2/MCF-$13/MCF based on Henry Hub spot prices from 2008-2015. One of the major findings in this study was that wells in the bend-arch basin were least economic, higher gas prices are needed in basins containing non-core counties and 90% of the Barnet shale wells were not economic at all finding and development costs irrespective of the gas price in all the basins. This study helps to determine the percentage of wells that are economic at different range of costs and gas prices, determine the basins that are most economic and the wells that satisfy the investment hurdle.Keywords: shale gas, Barnett shale, unconventional gas, estimated ultimate recoverable
Procedia PDF Downloads 3061992 The Study of Flood Resilient House in Ebo-Town
Authors: Alagie Salieu Nankey
Abstract:
Flood-resistant house is the key mechanism to withstand flood hazards in Ebo-Town. It emerged simple yet powerful way of mitigating flooding in the community of Ebo- Town. Even though there are different types of buildings, little is known yet how and why flood affects building severely. In this paper, we examine three different types of flood-resistant buildings that are suitable for Ebo Town. We gather content and contextual features from six (6) respondents and used this data set to identify factors that are significantly associated with the flood-resistant house. Moreover, we built a suitable design concept. We found that amongst all the theories studied in the literature study Slit or Elevated House is the most suitable building design in Ebo-Town and Pile foundation is the most appropriate foundation type in the study area. Amongst contextual features, local materials are the most economical materials for the proposed design. This research proposes a framework that explains the theoretical relationships between flood hazard zones and flood-resistant houses in Ebo Town. Moreover, this research informs the design of sense-making and analytics tools for the resistant house.Keywords: flood-resistant, slit, flood hazard zone, pile foundation
Procedia PDF Downloads 531991 Estimation of Scour Using a Coupled Computational Fluid Dynamics and Discrete Element Model
Authors: Zeinab Yazdanfar, Dilan Robert, Daniel Lester, S. Setunge
Abstract:
Scour has been identified as the most common threat to bridge stability worldwide. Traditionally, scour around bridge piers is calculated using the empirical approaches that have considerable limitations and are difficult to generalize. The multi-physic nature of scouring which involves turbulent flow, soil mechanics and solid-fluid interactions cannot be captured by simple empirical equations developed based on limited laboratory data. These limitations can be overcome by direct numerical modeling of coupled hydro-mechanical scour process that provides a robust prediction of bridge scour and valuable insights into the scour process. Several numerical models have been proposed in the literature for bridge scour estimation including Eulerian flow models and coupled Euler-Lagrange models incorporating an empirical sediment transport description. However, the contact forces between particles and the flow-particle interaction haven’t been taken into consideration. Incorporating collisional and frictional forces between soil particles as well as the effect of flow-driven forces on particles will facilitate accurate modeling of the complex nature of scour. In this study, a coupled Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) has been developed to simulate the scour process that directly models the hydro-mechanical interactions between the sediment particles and the flowing water. This approach obviates the need for an empirical description as the fundamental fluid-particle, and particle-particle interactions are fully resolved. The sediment bed is simulated as a dense pack of particles and the frictional and collisional forces between particles are calculated, whilst the turbulent fluid flow is modeled using a Reynolds Averaged Navier Stocks (RANS) approach. The CFD-DEM model is validated against experimental data in order to assess the reliability of the CFD-DEM model. The modeling results reveal the criticality of particle impact on the assessment of scour depth which, to the authors’ best knowledge, hasn’t been considered in previous studies. The results of this study open new perspectives to the scour depth and time assessment which is the key to manage the failure risk of bridge infrastructures.Keywords: bridge scour, discrete element method, CFD-DEM model, multi-phase model
Procedia PDF Downloads 1361990 A Single-Channel BSS-Based Method for Structural Health Monitoring of Civil Infrastructure under Environmental Variations
Authors: Yanjie Zhu, André Jesus, Irwanda Laory
Abstract:
Structural Health Monitoring (SHM), involving data acquisition, data interpretation and decision-making system aim to continuously monitor the structural performance of civil infrastructures under various in-service circumstances. The main value and purpose of SHM is identifying damages through data interpretation system. Research on SHM has been expanded in the last decades and a large volume of data is recorded every day owing to the dramatic development in sensor techniques and certain progress in signal processing techniques. However, efficient and reliable data interpretation for damage detection under environmental variations is still a big challenge. Structural damages might be masked because variations in measured data can be the result of environmental variations. This research reports a novel method based on single-channel Blind Signal Separation (BSS), which extracts environmental effects from measured data directly without any prior knowledge of the structure loading and environmental conditions. Despite the successful application in audio processing and bio-medical research fields, BSS has never been used to detect damage under varying environmental conditions. This proposed method optimizes and combines Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) together to separate structural responses due to different loading conditions respectively from a single channel input signal. The ICA is applying on dimension-reduced output of EEMD. Numerical simulation of a truss bridge, inspired from New Joban Line Arakawa Railway Bridge, is used to validate this method. All results demonstrate that the single-channel BSS-based method can recover temperature effects from mixed structural response recorded by a single sensor with a convincing accuracy. This will be the foundation of further research on direct damage detection under varying environment.Keywords: damage detection, ensemble empirical mode decomposition (EEMD), environmental variations, independent component analysis (ICA), principal component analysis (PCA), structural health monitoring (SHM)
Procedia PDF Downloads 3101989 Study of the Potential of Raw Sediments and Sediments Treated with Lime or Cement for Use in a Foundation Layer and the Base Layer of a Roadway
Authors: Nor-Edine Abriak, Mahfoud Benzerzour, Mouhamadou Amar, Abdeljalil Zri
Abstract:
In this work, firstly we have studied the potential of raw sediments and sediments treated with lime or cement for use in a foundation layer and the base layer of a roadway. Secondly, we have examined mineral changes caused by the addition of lime or cement in order to explain the mechanical performance of stabilized sediments. After determining the amount of lime and cement required stabilizing the sediments, the compaction characteristics and Immediate Bearing Capacity (IBI) were studied using the Modified Proctor method. Then, the evolution of the three parameters, which are optimum water content, maximum dry density and IBI, were determined. Mechanical performances can be evaluated through resistance to compression, resistance under traction and the elasticity modulus. The resistances of the formulations treated with ROLAC®645 increase with the amount of ROLAC®645. Traction resistance and the elastic modulus were used to evaluate the potential of the formulations as road construction materials using the classification diagram. The results show that all the other formulations with ROLAC®645 can be used in subgrades and foundation layers for roads.Keywords: sediment, lime, cement, roadway
Procedia PDF Downloads 2701988 Design, Construction and Evaluation of Ultra-High-Performance Concrete (UHPC) Bridge Deck Overlays
Authors: Jordy Padilla
Abstract:
The New Jersey Department of Transportation (NJDOT) initiated a research project to install and evaluate Ultra-High-Performance Concrete (UHPC) as an overlay on existing bridges. The project aims to implement UHPC overlays in NJDOT bridge deck strategies for preservation and repair. During design, four bridges were selected for construction. The construction involved the removal of the existing bridge asphalt overlays, partially removing the existing concrete deck surface, and resurfacing the deck with a UHPC overlay. In some cases, a new asphalt riding surface was placed. Additionally, existing headers were replaced with full-depth UHPC. The UHPC overlay is monitored through coring and Non-destructive testing (NDT) to ensure that the interfacial bond is intact and that the desired conditions are maintained. The NDT results show no evidence that the bond between the new UHPC overlay and the existing concrete deck is compromised. Bond strength test data demonstrates that, in general, the desired bond was achieved between UHPC and the substrate concrete, although the results were lower than anticipated. Chloride content is also within expectations except for one anomaly. The baseline testing was successful, and no significant defects were encountered.Keywords: ultra-high performance concrete, rehabilitation, non-destructive testing
Procedia PDF Downloads 83