Search results for: brain MRI
1166 Education and Learning in Indonesia to Refer to the Democratic and Humanistic Learning System in Finland
Authors: Nur Sofi Hidayah, Ratih Tri Purwatiningsih
Abstract:
Learning is a process attempts person to obtain a new behavior changes as a whole, as a result of his own experience in the interaction with the environment. Learning involves our brain to think, while the ability of the brain to each student's performance is different. To obtain optimal learning results then need time to learn the exact hour that the brain's performance is not too heavy. Referring to the learning system in Finland which apply 45 minutes to learn and a 15-minute break is expected to be the brain work better, with the rest of the brain, the brain will be more focused and lessons can be absorbed well. It can be concluded that learning in this way students learn with brain always fresh and the best possible use of the time, but it can make students not saturated in a lesson.Keywords: learning, working hours brain, time efficient learning, working hours in the brain receive stimulus.
Procedia PDF Downloads 3971165 Human Brain Organoids-on-a-Chip Systems to Model Neuroinflammation
Authors: Feng Guo
Abstract:
Human brain organoids, 3D brain tissue cultures derived from human pluripotent stem cells, hold promising potential in modeling neuroinflammation for a variety of neurological diseases. However, challenges remain in generating standardized human brain organoids that can recapitulate key physiological features of a human brain. Here, this study presents a series of organoids-on-a-chip systems to generate better human brain organoids and model neuroinflammation. By employing 3D printing and microfluidic 3D cell culture technologies, the study’s systems enable the reliable, scalable, and reproducible generation of human brain organoids. Compared with conventional protocols, this study’s method increased neural progenitor proliferation and reduced heterogeneity of human brain organoids. As a proof-of-concept application, the study applied this method to model substance use disorders.Keywords: human brain organoids, microfluidics, organ-on-a-chip, neuroinflammation
Procedia PDF Downloads 2021164 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for the balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.Keywords: power spectral density, 3D EEG model, brain balancing, kNN
Procedia PDF Downloads 4861163 Partial Differential Equation-Based Modeling of Brain Response to Stimuli
Authors: Razieh Khalafi
Abstract:
The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.Keywords: brain, stimuli, partial differential equation, response, EEG signal
Procedia PDF Downloads 5541162 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images
Authors: Sofia Matoug, Amr Abdel-Dayem
Abstract:
This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images MRI
Procedia PDF Downloads 3021161 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue
Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni
Abstract:
Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM
Procedia PDF Downloads 3311160 A Mathematical-Based Formulation of EEG Fluctuations
Authors: Razi Khalafi
Abstract:
Brain is the information processing center of the human body. Stimuli in form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modeling of the EEG signal in case external stimuli but it can be used for the modeling of brain response in case of internal stimuli.Keywords: Brain, stimuli, partial differential equation, response, eeg signal
Procedia PDF Downloads 4331159 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection
Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour
Abstract:
The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.Keywords: EEG, wavelet, epilepsy, detection
Procedia PDF Downloads 5381158 Improvement of Brain Tumors Detection Using Markers and Boundaries Transform
Authors: Yousif Mohamed Y. Abdallah, Mommen A. Alkhir, Amel S. Algaddal
Abstract:
This was experimental study conducted to study segmentation of brain in MRI images using edge detection and morphology filters. For brain MRI images each film scanned using digitizer scanner then treated by using image processing program (MatLab), where the segmentation was studied. The scanned image was saved in a TIFF file format to preserve the quality of the image. Brain tissue can be easily detected in MRI image if the object has sufficient contrast from the background. We use edge detection and basic morphology tools to detect a brain. The segmentation of MRI images steps using detection and morphology filters were image reading, detection entire brain, dilation of the image, filling interior gaps inside the image, removal connected objects on borders and smoothen the object (brain). The results of this study were that it showed an alternate method for displaying the segmented object would be to place an outline around the segmented brain. Those filters approaches can help in removal of unwanted background information and increase diagnostic information of Brain MRI.Keywords: improvement, brain, matlab, markers, boundaries
Procedia PDF Downloads 5161157 Optimising Transcranial Alternating Current Stimulation
Authors: Robert Lenzie
Abstract:
Transcranial electrical stimulation (tES) is significant in the research literature. However, the effects of tES on brain activity are still poorly understood at the surface level, the Brodmann Area level, and the impact on neural networks. Using a method like electroencephalography (EEG) in conjunction with tES might make it possible to comprehend the brain response and mechanisms behind published observed alterations in more depth. Using a method to directly see the effect of tES on EEG may offer high temporal resolution data on the brain activity changes/modulations brought on by tES that correlate to various processing stages within the brain. This paper provides unpublished information on a cutting-edge methodology that may reveal details about the dynamics of how the human brain works beyond what is now achievable with existing methods.Keywords: tACS, frequency, EEG, optimal
Procedia PDF Downloads 811156 Post-Contrast Susceptibility Weighted Imaging vs. Post-Contrast T1 Weighted Imaging for Evaluation of Brain Lesions
Authors: Sujith Rajashekar Swamy, Meghana Rajashekara Swamy
Abstract:
Although T1-weighted gadolinium-enhanced imaging (T1-Gd) has its established clinical role in diagnosing brain lesions of infectious and metastatic origins, the use of post-contrast susceptibility-weighted imaging (SWI) has been understudied. This observational study aims to explore and compare the prominence of brain parenchymal lesions between T1-Gd and SWI-Gd images. A cross-sectional study design was utilized to analyze 58 patients with brain parenchymal lesions using T1-Gd and SWI-Gd scanning techniques. Our results indicated that SWI-Gd enhanced the conspicuity of metastatic as well as infectious brain lesions when compared to T1-Gd. Consequently, it can be used as an adjunct to T1-Gd for post-contrast imaging, thereby avoiding additional contrast administration. Improved conspicuity of brain lesions translates directly to enhanced patient outcomes, and hence SWI-Gd imaging proves useful to meet that endpoint.Keywords: susceptibility weighted, T1 weighted, brain lesions, gadolinium contrast
Procedia PDF Downloads 1281155 Patent on Brian: Brain Waves Stimulation
Authors: Jalil Qoulizadeh, Hasan Sadeghi
Abstract:
Brain waves are electrical wave patterns that are produced in the human brain. Knowing these waves and activating them can have a positive effect on brain function and ultimately create an ideal life. The brain has the ability to produce waves from 0.1 to above 65 Hz. (The Beta One device produces exactly these waves) This is because it is said that the waves produced by the Beta One device exactly match the waves produced by the brain. The function and method of this device is based on the magnetic stimulation of the brain. The technology used in the design and producƟon of this device works in a way to strengthen and improve the frequencies of brain waves with a pre-defined algorithm according to the type of requested function, so that the person can access the expected functions in life activities. to perform better. The effect of this field on neurons and their stimulation: In order to evaluate the effect of this field created by the device, on the neurons, the main tests are by conducting electroencephalography before and after stimulation and comparing these two baselines by qEEG or quantitative electroencephalography method using paired t-test in 39 subjects. It confirms the significant effect of this field on the change of electrical activity recorded after 30 minutes of stimulation in all subjects. The Beta One device is able to induce the appropriate pattern of the expected functions in a soft and effective way to the brain in a healthy and effective way (exactly in accordance with the harmony of brain waves), the process of brain activities first to a normal state and then to a powerful one. Production of inexpensive neuroscience equipment (compared to existing rTMS equipment) Magnetic brain stimulation for clinics - homes - factories and companies - professional sports clubs.Keywords: stimulation, brain, waves, betaOne
Procedia PDF Downloads 811154 Recent Advancement in Dendrimer Based Nanotechnology for the Treatment of Brain Tumor
Authors: Nitin Dwivedi, Jigna Shah
Abstract:
Brain tumor is metastatic neoplasm of central nervous system, in most of cases it is life threatening disease with low survival rate. Despite of enormous efforts in the development of therapeutics and diagnostic tools, the treatment of brain tumors and gliomas remain a considerable challenge in the area of neuro-oncology. The most reason behind of this the presence of physiological barriers including blood brain barrier and blood brain tumor barrier, lead to insufficient reach ability of therapeutic agents at the site of tumor, result of inadequate destruction of gliomas. So there is an indeed need empowerment of brain tumor imaging for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional different generations of dendrimer offer an improved effort for potentiate drug delivery at the site of brain tumor and gliomas. So this article emphasizes the innovative dendrimer approaches in tumor targeting, tumor imaging and delivery of therapeutic agent.Keywords: blood brain barrier, dendrimer, gliomas, nanotechnology
Procedia PDF Downloads 5611153 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network
Authors: Leila Keshavarz Afshar, Hedieh Sajedi
Abstract:
Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter
Procedia PDF Downloads 1471152 Brain Atrophy in Alzheimer's Patients
Authors: Tansa Nisan Gunerhan
Abstract:
Dementia comes in different forms, including Alzheimer's disease. The most common dementia diagnosis among elderly individuals is Alzheimer's disease. On average, for patients with Alzheimer’s, life expectancy is around 4-8 years after the diagnosis; however, expectancy can go as high as twenty years or more, depending on the shrinkage of the brain. Normally, along with aging, the brain shrinks at some level but doesn’t lose a vast amount of neurons. However, Alzheimer's patients' neurons are destroyed rapidly; hence problems with loss of memory, communication, and other metabolic activities begin. The toxic changes in the brain affect the stability of the neurons. Beta-amyloid and tau are two proteins that are believed to play a role in the development of Alzheimer's disease through their toxic changes. Beta-amyloid is a protein that is produced in the brain and is normally broken down and removed from the body. However, in people with Alzheimer's disease, the production of beta-amyloid increases, and it begins to accumulate in the brain. These plaques are thought to disrupt communication between nerve cells and may contribute to the death of brain cells. Tau is a protein that helps to stabilize microtubules, which are essential for the transportation of nutrients and other substances within brain cells. In people with Alzheimer's disease, tau becomes abnormal and begins to accumulate inside brain cells, forming neurofibrillary tangles. These tangles disrupt the normal functioning of brain cells and may contribute to their death, forming amyloid plaques which are deposits of a protein called amyloid-beta that build up between nerve cells in the brain. The accumulation of amyloid plaques and neurofibrillary tangles in the brain is thought to contribute to the shrinkage of brain tissue. As the brain shrinks, the size of the brain may decrease, leading to a reduction in brain volume. Brain atrophy in Alzheimer's disease is often accompanied by changes in the structure and function of brain cells and the connections between them, leading to a decline in brain function. These toxic changes that accumulate can cause symptoms such as memory loss, difficulty with thinking and problem-solving, and changes in behavior and personality.Keywords: Alzheimer, amyloid-beta, brain atrophy, neuron, shrinkage
Procedia PDF Downloads 951151 Descriptive Study of Role Played by Exercise and Diet on Brain Plasticity
Authors: Mridul Sharma, Praveen Saroha
Abstract:
In today's world, everyone has become so busy in their to-do tasks and daily routine that they tend to ignore some of the basal components of our life, including exercise and diet. This comparative study analyzes the pathways of the relationship between exercise and brain plasticity and also includes another variable diet to study the effects of diet on learning by answering questions including which diet is known to be the best learning supporter and what are the recommended quantities of the same. Further, this study looks into inter-relation between diet and exercise, and also some other approach of the relation between diet and exercise on learning apart from through Brain Derived Neurotrophic Factor (BDNF).Keywords: brain derived neurotrophic factor, brain plasticity, diet, exercise
Procedia PDF Downloads 1411150 The Effect of the Hemispheres of the Brain and the Tone of Voice on Persuasion
Authors: Rica Jell de Laza, Jose Alberto Fernandez, Andrea Marie Mendoza, Qristin Jeuel Regalado
Abstract:
This study investigates whether participants experience different levels of persuasion depending on the hemisphere of the brain and the tone of voice. The experiment was performed on 96 volunteer undergraduate students taking an introductory course in psychology. The participants took part in a 2 x 3 (Hemisphere: left, right x Tone of Voice: positive, neutral, negative) Mixed Factorial Design to measure how much a person was persuaded. Results showed that the hemisphere of the brain and the tone of voice used did not significantly affect the results individually. Furthermore, there was no interaction effect. Therefore, the hemispheres of the brain and the tone of voice employed play insignificant roles in persuading a person.Keywords: dichotic listening, brain hemisphere, tone of voice, persuasion
Procedia PDF Downloads 3061149 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method
Procedia PDF Downloads 5111148 Evaluation of Fetal brain using Magnetic Resonance Imaging
Authors: Mahdi Farajzadeh Ajirlou
Abstract:
Ordinary fetal brain development can be considered by in vivo attractive reverberation imaging (MRI) from the 18th gestational week (GW) to term and depends fundamentally on T2-weighted and diffusion-weighted (DW) arrangements. The foremost commonly suspected brain pathologies alluded to fetal MRI for assist assessment are ventriculomegaly, lost corpus callosum, and anomalies of the posterior fossa. Brain division could be a crucial to begin with step in neuroimage examination. Within the case of fetal MRI it is especially challenging and critical due to the subjective introduction of the hatchling, organs that encompass the fetal head, and irregular fetal movement. A few promising strategies have been proposed but are constrained in their execution in challenging cases and in realtime division. Fetal MRI is routinely performed on a 1.5-Tesla scanner without maternal or fetal sedation. The mother lies recumbent amid the course of the examination, the length of which is ordinarily 45 to 60 minutes. The accessibility and continuous approval of standardizing fetal brain development directions will give critical devices for early discovery of impeded fetal brain development upon which to oversee high-risk pregnancies.Keywords: brain, fetal, MRI, imaging
Procedia PDF Downloads 791147 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms
Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,
Abstract:
Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model
Procedia PDF Downloads 2821146 Mechanical Prosthesis Controlled by Brain-Computer Interface
Authors: Tianyu Cao, KIRA (Ruizhi Zhao)
Abstract:
The purpose of our research is to study the possibility of people with physical disabilities manipulating mechanical prostheses through brain-computer interface (BCI) technology. The brain-machine interface (BCI) of the neural prosthesis records signals from neurons and uses mathematical modeling to decode them, converting desired movements into body movements. In order to improve the patient's neural control, the prosthesis is given a natural feeling. It records data from sensitive areas from the body to the prosthetic limb and encodes signals in the form of electrical stimulation to the brain. In our research, the brain-computer interface (BCI) is a bridge connecting patients’ cognition and the real world, allowing information to interact with each other. The efficient work between the two is achieved through external devices. The flow of information is controlled by BCI’s ability to record neuronal signals and decode signals, which are converted into device control. In this way, we could encode information and then send it to the brain through electrical stimulation, which has significant medical application.Keywords: biomedical engineering, brain-computer interface, prosthesis, neural control
Procedia PDF Downloads 1811145 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 741144 Meditation Based Brain Painting Promotes Foreign Language Memory through Establishing a Brain-Computer Interface
Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny
Abstract:
In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide new insights into meditation, creative language education, brain-computer interface, and human-computer interactions.Keywords: brain-computer interface, creative thinking, meditation, mental health
Procedia PDF Downloads 1271143 Magnetic Resonance Imaging in Children with Brain Tumors
Authors: J. R. Ashrapov, G. A. Alihodzhaeva, D. E. Abdullaev, N. R. Kadirbekov
Abstract:
Diagnosis of brain tumors is one of the challenges, as several central nervous system diseases run the same symptoms. Modern diagnostic techniques such as CT, MRI helps to significantly improve the surgery in the operating period, after surgery, after allowing time to identify postoperative complications in neurosurgery. Purpose: To study the MRI characteristics and localization of brain tumors in children and to detect the postoperative complications in the postoperative period. Materials and methods: A retrospective study of treatment of 62 children with brain tumors in age from 2 to 5 years was performed. Results of the review: MRI scan of the brain of the 62 patients 52 (83.8%) case revealed a brain tumor. Distribution on MRI of brain tumors found in 15 (24.1%) - glioblastomas, 21 (33.8%) - astrocytomas, 7 (11.2%) - medulloblastomas, 9 (14.5%) - a tumor origin (craniopharyngiomas, chordoma of the skull base). MRI revealed the following characteristic features: an additional sign of the heterogeneous MRI signal of hyper and hypointensive T1 and T2 modes with a different perifocal swelling degree with involvement in the process of brain vessels. The main objectives of postoperative MRI study are the identification of early or late postoperative complications, evaluation of radical surgery, the identification of the extended-growing tumor that (in terms of 3-4 weeks). MRI performed in the following cases: 1. Suspicion of a hematoma (3 days or more) 2. Suspicion continued tumor growth (in terms of 3-4 weeks). Conclusions: Magnetic resonance tomography is a highly informative method of diagnostics of brain tumors in children. MRI also helps to determine the effectiveness and tactics of treatment and the follow up in the postoperative period.Keywords: brain tumors, children, MRI, treatment
Procedia PDF Downloads 1451142 Brain-Motor Disablement: Using Virtual Reality-Based Therapeutic Simulations
Authors: Vince Macri, Jakub Petioky, Paul Zilber
Abstract:
Virtual-reality-based technology, i.e. video-game-like simulations (collectively, VRSims) are used in therapy for a variety of medical conditions. The purpose of this paper is to contribute to a discussion on criteria for selecting VRSims to augment treatment of survivors of acquired brain injury. Specifically, for treatments to improve or restore brain motor function in upper extremities affected by paresis or paralysis. Six uses of virtual reality are reviewed video games for entertainment, training simulations, unassisted or device-assisted movements of affected or unaffected extremities displayed in virtual environments and virtual anatomical interactivity.Keywords: acquired brain injury, brain-motor function, virtual anatomical interactivity, therapeutic simulations
Procedia PDF Downloads 5871141 Clinical Trial of VEUPLEXᵀᴹ TBI Assay to Help Diagnose Traumatic Brain Injury by Quantifying Glial Fibrillary Acidic Protein and Ubiquitin Carboxy-Terminal Hydrolase L1 in the Serum of Patients Suspected of Mild TBI by Fluorescence Immunoassay
Authors: Moon Jung Kim, Guil Rhim
Abstract:
The clinical sensitivity of the “VEUPLEXTM TBI assay”, a clinical trial medical device, in mild traumatic brain injury was 28.6% (95% CI, 19.7%-37.5%), and the clinical specificity was 94.0% (95% CI, 89.3%). -98.7%). In addition, when the results analyzed by marker were put together, the sensitivity was higher when interpreting the two tests together than the two tests, UCHL1 and GFAP alone. Additionally, when sensitivity and specificity were analyzed based on CT results for the mild traumatic brain injury patient group, the clinical sensitivity for 2 CT-positive cases was 50.0% (95% CI: 1.3%-98.7%), and 19 CT-negative cases. The clinical specificity for cases was 68.4% (95% CI: 43.5% - 87.4%). Since the low clinical sensitivity for the two CT-positive cases was not statistically significant due to the small number of samples analyzed, it was judged necessary to secure and analyze more samples in the future. Regarding the clinical specificity analysis results for 19 CT-negative cases, there were a large number of patients who were actually clinically diagnosed with mild traumatic brain injury but actually received a CT-negative result, and about 31.6% of them showed abnormal results on VEUPLEXTM TBI assay. Although traumatic brain injury could not be detected in 31.6% of the CT scans, the possibility of actually suffering a mild brain injury could not be ruled out, so it was judged that this could be confirmed through follow-up observation of the patient. In addition, among patients with mild traumatic brain injury, CT examinations were not performed in many cases because the symptoms were very mild, but among these patients, about 25% or more showed abnormal results in the VEUPLEXTM TBI assay. In fact, no damage is observed with the naked eye immediately after traumatic brain injury, and traumatic brain injury is not observed even on CT. But in some cases, brain hemorrhage may occur (delayed cerebral hemorrhage) after a certain period of time, so the patients who did show abnormal results on VEUPLEXTM TBI assay should be followed up for the delayed cerebral hemorrhage. In conclusion, it was judged that it was difficult to judge mild traumatic brain injury with the VEUPLEXTM TBI assay only through clinical findings without CT results, that is, based on the GCS value. Even in the case of CT, it does not detect all mild traumatic brain injury, so it is difficult to necessarily judge that there is no traumatic brain injury, even if there is no evidence of traumatic brain injury in CT. And in the long term, more patients should be included to evaluate the usefulness of the VEUPLEXTM TBI assay in the detection of microscopic traumatic brain injuries without using CT.Keywords: brain injury, traumatic brain injury, GFAP, UCHL1
Procedia PDF Downloads 991140 Estimation of Endogenous Brain Noise from Brain Response to Flickering Visual Stimulation Magnetoencephalography Visual Perception Speed
Authors: Alexander N. Pisarchik, Parth Chholak
Abstract:
Intrinsic brain noise was estimated via magneto-encephalograms (MEG) recorded during perception of flickering visual stimuli with frequencies of 6.67 and 8.57 Hz. First, we measured the mean phase difference between the flicker signal and steady-state event-related field (SSERF) in the occipital area where the brain response at the flicker frequencies and their harmonics appeared in the power spectrum. Then, we calculated the probability distribution of the phase fluctuations in the regions of frequency locking and computed its kurtosis. Since kurtosis is a measure of the distribution’s sharpness, we suppose that inverse kurtosis is related to intrinsic brain noise. In our experiments, the kurtosis value varied among subjects from K = 3 to K = 5 for 6.67 Hz and from 2.6 to 4 for 8.57 Hz. The majority of subjects demonstrated leptokurtic kurtosis (K < 3), i.e., the distribution tails approached zero more slowly than Gaussian. In addition, we found a strong correlation between kurtosis and brain complexity measured as the correlation dimension, so that the MEGs of subjects with higher kurtosis exhibited lower complexity. The obtained results are discussed in the framework of nonlinear dynamics and complex network theories. Specifically, in a network of coupled oscillators, phase synchronization is mainly determined by two antagonistic factors, noise, and the coupling strength. While noise worsens phase synchronization, the coupling improves it. If we assume that each neuron and each synapse contribute to brain noise, the larger neuronal network should have stronger noise, and therefore phase synchronization should be worse, that results in smaller kurtosis. The described method for brain noise estimation can be useful for diagnostics of some brain pathologies associated with abnormal brain noise.Keywords: brain, flickering, magnetoencephalography, MEG, visual perception, perception time
Procedia PDF Downloads 1481139 Highly Skilled Migrants Trapped in the Brain Waste: The Eastern European Graduates in the Western European Underemployment
Authors: Katalin Bándy
Abstract:
The European emigration of highly educated immigrants draws attention to the problem of brain drain. Due to the Eastern European countries joining the EU and the opening of the Western European labour market the west-wards migration brisked up. By now another problem has been intensified correlated to migration: the migration of highly skilled workers related to brain waste tendencies. With some exceptions, educated immigrants from Eastern European countries are more likely to end up in unskilled jobs than residents. This paper is about to reveal the above-mentioned problems and this study is supported by the results of secondary pieces of research and the own survey made in the EU-15 among the Hungarian highly skilled (especially economics graduated) migrants, and it also examines the causes and in the focus there are the migrant motivations of the high-skilled young generation after the crisis.Keywords: brain drain, brain waste, migration of highly-skilled, underemployment
Procedia PDF Downloads 3411138 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 661137 African Personhood and the Regulation of Brain-Computer Interface (BCI) Technologies: A South African view
Authors: Meshandren Naidoo, Amy Gooden
Abstract:
Implantable brain-computer interface (BCI) technologies have developed to the point where brain-computer communication is possible. This has great potential in the medical field, as it allows persons who have lost capacities. However, ethicists and regulators call for a strict approach to these technologies due to the impact on personhood. This research demonstrates that the personhood debate is more nuanced and that where an African approach to personhood is used, it may produce results more favorable to the development and use of this technology.Keywords: artificial intelligence, law, neuroscience, ethics
Procedia PDF Downloads 131