Search results for: thermal radiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1685

Search results for: thermal radiation

1655 Effect of Gamma Radiation on Bromophenol Blue Dyed Films as Dosimeter

Authors: Priyanka R. Oberoi, Chandra B. Maurya, Prakash A. Mahanwar

Abstract:

Ionizing radiation can cause a drastic change in the physical and chemical properties of the material exposed. Numerous medical devices are sterilized by ionizing radiation. In the current research paper, an attempt was made to develop precise and inexpensive polymeric film dosimeter which can be used for controlling radiation dosage. Polymeric film containing (pH sensitive dye) indicator dye Bromophenol blue (BPB) was casted to check the effect of Gamma radiation on its optical and physical properties. The film was exposed to gamma radiation at 4 kGy/hr in the range of 0 to 300 kGy at an interval of 50 kGy. Release of vinyl acetate from an emulsion on high radiation reacts with the BPB fading the color of the film from blue to light blue and then finally colorless, indicating a change in pH from basic to acidic form. The change was characterized by using CIE l*a*b*, ultra-violet spectroscopy and FT-IR respectively.

Keywords: Bromophenol blue, dosimeter, gamma radiation, polymer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681
1654 Solving Transient Conduction and Radiation Using Finite Volume Method

Authors: Ashok K. Satapathy, Prerana Nashine

Abstract:

Radiative heat transfer in participating medium was carried out using the finite volume method. The radiative transfer equations are formulated for absorbing and anisotropically scattering and emitting medium. The solution strategy is discussed and the conditions for computational stability are conferred. The equations have been solved for transient radiative medium and transient radiation incorporated with transient conduction. Results have been obtained for irradiation and corresponding heat fluxes for both the cases. The solutions can be used to conclude incident energy and surface heat flux. Transient solutions were obtained for a slab of heat conducting in slab and by thermal radiation. The effect of heat conduction during the transient phase is to partially equalize the internal temperature distribution. The solution procedure provides accurate temperature distributions in these regions. A finite volume procedure with variable space and time increments is used to solve the transient radiation equation. The medium in the enclosure absorbs, emits, and anisotropically scatters radiative energy. The incident radiations and the radiative heat fluxes are presented in graphical forms. The phase function anisotropy plays a significant role in the radiation heat transfer when the boundary condition is non-symmetric.

Keywords: Participating media, finite volume method, radiation coupled with conduction, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2898
1653 Beam and Diffuse Solar Energy in Zarqa City

Authors: Ali M. Jawarneh

Abstract:

Beam and diffuse radiation data are extracted analytically from previous measured data on a horizontal surface in Zarqa city. Moreover, radiation data on a tilted surfaces with different slopes have been derived and analyzed. These data are consisting of of beam contribution, diffuse contribution, and ground reflected contribution radiation. Hourly radiation data for horizontal surface possess the highest radiation values on June, and then the values decay as the slope increases and the sharp decreasing happened for vertical surface. The beam radiation on a horizontal surface owns the highest values comparing to diffuse radiation for all days of June. The total daily radiation on the tilted surface decreases with slopes. The beam radiation data also decays with slopes especially for vertical surface. Diffuse radiation slightly decreases with slopes with sharp decreases for vertical surface. The groundreflected radiation grows with slopes especially for vertical surface. It-s clear that in June the highest harvesting of solar energy occurred for horizontal surface, then the harvesting decreases as the slope increases.

Keywords: Beam and Diffuse Radiation, Zarqa City

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
1652 Simulation Method for Determining the Thermally Induced Displacement of Machine Tools – Experimental Validation and Utilization in the Design Process

Authors: G. Kehl, P. Wagner

Abstract:

A novel simulation method to determine the displacements of machine tools due to thermal factors is presented. The specific characteristic of this method is the employment of original CAD data from the design process chain, which is interpreted by an algorithm in terms of geometry-based allocation of convection and radiation parameters. Furthermore analogous models relating to the thermal behaviour of machine elements are automatically implemented, which were gained by extensive experimental testing with thermography imaging. With this a transient simulation of the thermal field and in series of the displacement of the machine tool is possible simultaneously during the design phase. This method was implemented and is already used industrially in the design of machining centres in order to improve the quality of herewith manufactured workpieces.

Keywords: Accuracy, design process, finite element analysis, machine tools, thermal simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
1651 3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills

Authors: J. Y. Jang, Y. W. Lee, C. N. Lin, C. H. Wang

Abstract:

The reheating furnace is used to reheat the steel slabs before the hot-rolling process. The supported system includes the stationary/moving beams, and the skid buttons which block some thermal radiation transmitted to the bottom of the slabs. Therefore, it is important to analyze the steel slab temperature distribution during the heating period. A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.

Keywords: 3-D, slab, transient heat conduction, reheating furnace, thermal radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
1650 Simulation of the Temperature and Heat Gain by Solar Parabolic Trough Collector in Algeria

Authors: M. Ouagued, A. Khellaf

Abstract:

The objectif of the present work is to determinate the potential of the solar parabolic trough collector (PTC) for use in the design of a solar thermal power plant in Algeria. The study is based on a mathematical modeling of the PTC. Heat balance has been established respectively on the heat transfer fluid (HTF), the absorber tube and the glass envelop using the principle of energy conservation at each surface of the HCE cross-sectionn. The modified Euler method is used to solve the obtained differential equations. At first the results for typical days of two seasons the thermal behavior of the HTF, the absorber and the envelope are obtained. Then to determine the thermal performances of the heat transfer fluid, different oils are considered and their temperature and heat gain evolutions compared.

Keywords: Direct solar irradiance, solar radiation in Algeria, solar parabolic trough collector, heat balance, thermal oil performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3610
1649 A Model of a Heat Radiation on a Mould Surface in the Car Industry

Authors: J. Mlýnek, R. Srb

Abstract:

This article is focused on the calculation of heat radiation intensity and its optimization on an aluminum mould surface. The inside of the mould is sprinkled with a special powder and its outside is heated by infra heaters located above the mould surface, up to a temperature of 250°C. By this way artificial leathers in the car industry are produced (e. g. the artificial leather on a car dashboard). A mathematical model of heat radiation of infra heaters on a mould surface is described in this paper. This model allows us to calculate a heat-intensity radiation on the mould surface for the concrete location of infra heaters above the mould surface. It is necessary to ensure approximately the same heat intensity radiation on the mould surface by finding a suitable location for the infra heaters, and in this way the same material structure and color of artificial leather. In the model we have used a genetic algorithm to optimize the radiation intensity on the mould surface. Experimental measured values for the heat radiation intensity by a sensor in the surroundings of an infra heater are used for the calculation procedures. A computational procedure was programmed in language Matlab.

Keywords: Genetic algorithm, mathematical model of heat radiation, optimization of radiation intensity, software implementation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
1648 Dynamic Fast Tracing and Smoothing Technique for Geiger-Muller Dosimeter

Authors: M. Ebrahimi Shohani, S. M. Taheri, S. M. Golgoun

Abstract:

Environmental radiation dosimeter is a kind of detector that measures the dose of the radiation area. Dosimeter registers the radiation and converts it to the dose according to the calibration parameters. The limit of a dose is different at each radiation area and this limit should be notified and reported to the user and health physics department. The stochastic nature of radiation is the reason for the fluctuation of any gamma detector dosimetry. In this research we investigated Geiger-Muller type of dosimeter and tried to improve the dose measurement. Geiger-Muller dosimeter is a counter that converts registered radiation to the dose. Therefore, for better data analysis, it is necessary to apply an algorithm to smooth statistical variations of registered radiation. We proposed a method to smooth these fluctuations much more and also proposed a dynamic way to trace rapid changes of radiations. Results show that our method is fast and reliable method in comparison the traditional method.

Keywords: Geiger-Muller, radiation detection, smoothing algorithms, dosimeter, dose calculation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360
1647 Nonlinear Thermal Expansion Model for SiC/Al

Authors: T.R. Sahroni, S. Sulaiman, I. Romli, M.R. Salleh, H.A. Ariff

Abstract:

The thermal expansion behaviour of silicon carbide (SCS-2) fibre reinforced 6061 aluminium matrix composite subjected to the influenced thermal mechanical cycling (TMC) process were investigated. The thermal stress has important effect on the longitudinal thermal expansion coefficient of the composites. The present paper used experimental data of the thermal expansion behaviour of a SiC/Al composite for temperatures up to 370°C, in which their data was used for carrying out modelling of theoretical predictions.

Keywords: Nonlinear, thermal, fibre reinforced, metal matrixcomposites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
1646 Thermal and Visual Performance of Solar Control Film

Authors: Norzita Jaafar, Nor Zaini Zakaria, Azni Zain Ahmed, Razidah Ismail

Abstract:

The use of solar control film on windows as one of solar passive strategies for building have becoming important and is gaining recognition. Malaysia located close to equator is having warm humid climate with long sunshine hours and abundant solar radiation throughout the year. Hence, befitting solar control on windows is absolutely necessary to capture the daylight whilst moderating thermal impact and eliminating glare problems. This is one of the energy efficient strategies to achieve thermal and visual comfort in buildings. Therefore, this study was carried out to investigate the effect of window solar controls on thermal and visual performance of naturally ventilated buildings. This was conducted via field data monitoring using a test building facility. Four types of window glazing systems were used with three types of solar control films. Data were analysed for thermal and visual impact with reference to thermal and optical characteristics of the films. Results show that for each glazing system, the surface temperature of windows are influenced by the Solar Energy Absorption property, the indoor air temperature are influenced by the Solar Energy Transmittance and Solar Energy Reflectance, and the daylighting by Visible Light Transmission and Shading Coefficient. Further investigations are underway to determine the mathematical relation between thermal energy and visual performance with the thermal and optical characteristics of solar control films.

Keywords: window, solar control film, natural ventilation, thermal performance, visual performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
1645 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: Boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
1644 Evaluation of GSM Radiation Power Density in Three Major Cities in Nigeria

Authors: B. O. Ayinmode, I. P. Farai

Abstract:

The levels of maximum power density of GSM signals in the cities of Lagos, Ibadan and Abuja were studied. Measurements were made with a calibrated hand held spectrum analyzer 200m away from 271 base stations, at 1.2m to the ground level. The maximum GSM 900 signal power density was 139.63μW/m2 in Lagos, 162.49μW/m2 in Ibadan and 5411.26μW/m2 in Abuja. Also, the maximum GSM 1800 signal power density was 296.82μW/m2 in Lagos, 116.82μW/m2 in Ibadan and 1263.00μW/m2 in Abuja. The level of power density of GSM 900 and GSM 1800 signals in the cities of Lagos, Ibadan and Abuja are far less than the recommended value of 4.5W/m2 for GSM 900 and 9.0 W/m2 for GSM 1800 by the ICNRP guideline. It can be concluded that exposure to GSM signals in these cities cannot contribute to the health detriments caused by thermal effects of radiofrequency radiation.

Keywords: Radiofrequency, power density, radiation exposure, base stations (BTS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
1643 Thermal Behavior of a Ventilated Façade Using Perforated Ceramic Bricks

Authors: H. López-Moreno, A. Rodríguez-Sánchez, C. Viñas-Arrebola, C. Porras-Amores

Abstract:

The ventilated façade has great advantages when compared to traditional façades as it reduces the air conditioning thermal loads due to the stack effect induced by solar radiation in the air chamber. Optimizing energy consumption by using a ventilated façade can be used not only in newly built buildings but also it can be implemented in existing buildings, opening the field of implementation to energy building retrofitting works. In this sense, the following three prototypes of façade where designed, built and further analyzed in this research: non-ventilated façade (NVF); slightly ventilated façade (SLVF) and strongly ventilated façade (STVF). The construction characteristics of the three facades are based on the Spanish regulation of building construction “Technical Building Code”. The façades have been monitored by type-k thermocouples in a representative day of the summer season in Madrid (Spain). Moreover, an analysis of variance (ANOVA) with repeated measures, studying the thermal lag in the ventilated and no-ventilated façades has been designed. Results show that STVF façade presents higher levels of thermal inertia as the thermal lag reduces up to 17% (daily mean) compared to the non-ventilated façade. In addition, the statistical analysis proves that an increase of the ventilation holes size in STVF façades can improve the thermal lag significantly (p >0.05) when compared to the SLVF façade.

Keywords: Energy efficiency, experimental study, statistical analysis, thermal behavior, ventilated façade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4062
1642 Collective Oscillations in a Magnetized Plasma Subjected to a Radiation Field

Authors: Daniel Santos, Bruno Ribeiro, Marco Amato, Antonio Fonseca

Abstract:

In this paper we discuss the behaviour of the longitudinal modes of a magnetized non collisional plasma subjected to an external electromagnetic field. We apply a semiclassical formalism, with the electrons being studied in a quantum mechanical viewpoint whereas the electromagnetic field in the classical context. We calculate the dielectric function in order to obtains the modes and found that, unlike the Bernstein modes, the presence of radiation induces oscillations around the cyclotron harmonics, which are smoothed as the energy stored in the radiation field becomes small compared to the thermal energy of the electrons. We analyze the influence of the number of photon involved in the electronic transitions between the Landau levels and how the parameters such as the external fields strength, plasma density and temperature affect the dispersion relation

Keywords: Collective oscillations, External fields, Dispersion relation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
1641 Radiation Workers’ Occupational Doses: Are We Really Careful or Overconscious

Authors: Sajjad A. Memon, Sadaf T. Qureshi, Naeem A. Laghari, Noor M. Khuhro

Abstract:

The present study represents the occupational radiation doses received by selected workers of Nuclear Institute of Medicine and Radiotherapy (NIMRA) Jamshoro Pakistan and conducted to discuss about how we be careful and try to avoid make ourselves overconscious. Film badges with unique identification number were issued to radiation worker to detect occupational radiation doses. In this study, only 08 workers with high radiation doses were assessed amongst 35 radiation workers during the period of January 2012 to December 2012. The selected radiation workers’ occupational doses were according to designated work areas and in the range of 1.21 to 7.78 mSv (mili Sieveret) out of the annual dose limit of 20 mSv. By the comparison of different studies and earth’s HNBR (High Natural Background Radiation) locations’ doses, it is concluded that the worker’s high doses are of magnitude of HNBR Regions and were in the acceptable range of National and International regulatory bodies so we must not to show any type of overconsciousness but be careful in handling the radioactive sources.

Keywords: Natural background radiation, Occupational dose, Overconscious, Personal monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
1640 Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

Authors: K. Touafek, A. Khelifa, E. H. Khettaf, A. Embarek

Abstract:

Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a hybrid prototype to evaluate electrical and thermal performance. In this paper, an experimental study of two new configurations of hybrid collectors is exposed. The results are given and interpreted. The two configurations of absorber studied are a new combination with tubes and galvanized tank, the other is a tubes and sheet.

Keywords: Experimental, Photovoltaic, Solar, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
1639 Using the Transient Plane Source Method for Measuring Thermal Parameters of Electroceramics

Authors: Peter Krupa, Svetozár Malinarič

Abstract:

Transient plane source method has been used to measure the thermal diffusivity and thermal conductivity of a compact isostatic electroceramics at room temperature. The samples were fired at temperatures from 100 up to 1320 degrees Celsius in steps of 50. Bulk density and specific heat capacity were also measured with their corresponding standard uncertainties. The results were compared with further thermal analysis (dilatometry and thermogravimetry). Structural processes during firing were discussed.

Keywords: TPS method, thermal conductivity, thermal diffusivity, thermal analysis, electroceramics, firing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6607
1638 Unsteady Stagnation-Point Flow towards a Shrinking Sheet with Radiation Effect

Authors: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop

Abstract:

In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter.

Keywords: Heat transfer, Radiation effect, Shrinking sheet Unsteady flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
1637 Effect of UV Radiation to Change the Properties of the Composite PA+GF

Authors: Lenka Markovičová, Viera Zatkalíková, Tomasz Garbacz

Abstract:

The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Some composites also exhibit great resistance to high-temperature corrosion, oxidation, and wear. Polymers are widely used indoors and outdoors, therefore they are exposed to a chemical environment which may include atmospheric oxygen, acidic fumes, acidic rain, moisture heat and thermal shock, ultra-violet light, high energy radiation, etc. Different polymers are affected differently by these factors even though the amorphous polymers are more sensitive. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, microorganisms and other atmospheric factors.

Keywords: Composites with glass fibres, mechanical properties, polyamides, UV degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
1636 Psychological Impact of Radiation Versus Its Physiological Effects: Radiation Workers’ Perspective in Medical Centers

Authors: Muhammad Waqar, Touqir Ahmad Afridi, Quratulain Soomro

Abstract:

Radiation is a ghost causing unimaginable physical damage, but its harm is not inevitable. The panic created by previously reported worst-case scenarios i.e., Three Mile Island, Fukushima, Chernobyl, has adversely affected the attitude of radiation workers towards the profession. The psychological effect of radiation-related catastrophes creates an invisible barrier that reduces the efficiency of radiation workers. Careful handling and proper monitoring of radiation decreases the hazards of radiation and proves that the psychological impairment of radiation is myriad fold adverse than its physiological damage. Thermoluminescent Dosimeter (TLD) badges with unique identity numbers were provided to 36 radiation workers for a period of one year (2021). TLDs were read quarterly, and doses were recorded for every radiation worker. Annual doses were recorded and compared with national and international standards. Moreover, the period for which an individual worker is expected to reach one year limit of 20 mSv was also calculated. The highest radiation dose for the radiation worker in 2021 was found at 3.2 mSv, which was 16% of the permissible annual dose limit. The average occupational radiation doses ranged from 1.0 mSv to 3.20 mSv. 64% of the employees did not exceed the 10% of the annual limit, receiving less than 2 mSv. The least time for 20 mSv completion was found 6.25 years for the hot-lab technician. As a whole, the 20 mSv completion period ranged from 6.25 to 20 years. We concluded that the annual professional radiation doses were well within the permissible limits of Pakistan Nuclear Regulatory Authority (PNRA) and International Commission on Radiological Protection (ICRP). The fear of radiation is unnecessary and it creates reluctance towards performing their assigned duties and it is also not favorable for the institute. It must be abolished through education and training sessions.

Keywords: TLD, thermoluminescent dosimeter, psychological impact, radiation dose, annual dose limit, PNRA, ICRP, IAEA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 361
1635 Design of Thermal Control Subsystem for TUSAT Telecommunication Satellite

Authors: N. Sozbir, M. Bulut, M.F.Oktem, A.Kahriman, A. Chaix

Abstract:

TUSAT is a prospective Turkish Communication Satellite designed for providing mainly data communication and broadcasting services through Ku-Band and C-Band channels. Thermal control is a vital issue in satellite design process. Therefore, all satellite subsystems and equipments should be maintained in the desired temperature range from launch to end of maneuvering life. The main function of the thermal control is to keep the equipments and the satellite structures in a given temperature range for various phases and operating modes of spacecraft during its lifetime. This paper describes the thermal control design which uses passive and active thermal control concepts. The active thermal control is based on heaters regulated by software via thermistors. Alternatively passive thermal control composes of heat pipes, multilayer insulation (MLI) blankets, radiators, paints and surface finishes maintaining temperature level of the overall carrier components within an acceptable value. Thermal control design is supported by thermal analysis using thermal mathematical models (TMM).

Keywords: Spacecraft thermal control, design of thermal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3629
1634 Control of Thermal Flow in Machine Tools Using Shape Memory Alloys

Authors: Reimund Neugebauer, Welf-Guntram Drossel, Andre Bucht, Christoph Ohsenbrügge

Abstract:

In this paper the authors propose and verify an approach to control heat flow in machine tool components. Thermal deformations are a main aspect that affects the accuracy of machining. Due to goals of energy efficiency, thermal basic loads should be reduced. This leads to inhomogeneous and time variant temperature profiles. To counteract these negative consequences, material with high melting enthalpy is used as a method for thermal stabilization. The increased thermal capacity slows down the transient thermal behavior. To account for the delayed thermal equilibrium, a control mechanism for thermal flow is introduced. By varying a gap in a heat flow path the thermal resistance of an assembly can be controlled. This mechanism is evaluated in two experimental setups. First to validate the ability to control the thermal resistance and second to prove the possibility of a self-sufficient option based on the selfsensing abilities of thermal shape memory alloys.

Keywords: energy-efficiency, heat transfer path, MT thermal stability, thermal shape memory alloy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
1633 Iron Doped Biomaterial Calcium Borate: Synthesis and Characterization

Authors: G. Çelik Gül, F. Kurtuluş

Abstract:

Colemanite is the most common borate mineral, and the main source of the boron required by plants, human, and earth. Transition metals exhibit optical and physical properties such as; non-linear optical character, structural diversity, thermal stability, long cycle life and luminescent radiation. The doping of colemanite with a transition metal, bring it very interesting and attractive properties which make them applicable in industry. Iron doped calcium borate was synthesized by conventional solid state method at 1200 °C for 12 h with a systematic pathway. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS) were used to characterize structural and morphological properties. Also, thermal properties were recorded by thermogravimetric-differential thermal analysis (TG/DTA). 

Keywords: Colemanite, conventional synthesis, powder x-ray diffraction, borates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
1632 Variability in Near-Surface Ultraviolet Radiation and Its Dependence on Atmospheric Parameters

Authors: Yusuff Idowu Moshood, Sanni Mohammed

Abstract:

Natural radiations such as ultraviolet (UV) radiation sourced from sun are known to be the main causes of skin cancer, sunburn, eye damage, premature aging of skin and other skin related diseases. Its percentage of radiation reaching the earth populace and its impacts are not well known. Its variability in near-surface relating to its impacts on populace depends on some atmospheric parameters. Hence, this work was embarked on to determine the variability in near-surface UV radiation and its dependency on some atmospheric parameters at different time of the day in Offa, Nigeria. The variability was determined using the data obtained from meteorological garden, Science Laboratory Technology Department, Federal Polytechnic Offa, Nigeria. The data obtained were solar UV radiation, solar radiation, temperature, humidity and pressure at 30 minutes interval. Relationships were determined and correlations were derived using SPSS Pearson Correlation tool. The results showed a significant level of correlation with p-value of 0.01 and 0.05 levels. Thus, the results revealed some good relationships between the solar UV radiation and other atmospheric parameters with significance level less than p-value obtained. Inferentially, interdependent relationships were found to exist. Therefore, the nature of relationship obtained could be a yardstick for decision making in short term environmental planning on solar UV radiation depending of some atmospheric parameters within Offa locality.

Keywords: Correlation, inferential, radiation, yardstick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727
1631 Thermal Properties of the Ground in Cyprus and Their Correlations and Effect on the Efficiency of Ground Heat Exchangers

Authors: G. A. Florides, E. Theofanous, I. Iosif-Stylianou, P. Christodoulides, S. Kalogirou, V. Messarites, Z. Zomeni, E. Tsiolakis, P. D. Pouloupatis, G. P. Panayiotou

Abstract:

Ground Coupled Heat Pumps (GCHPs) exploit effectively the heat capacity of the ground, with the use of Ground Heat Exchangers (GHE). Depending on the mode of operation of the GCHPs, GHEs dissipate or absorb heat from the ground. For sizing the GHE the thermal properties of the ground need to be known. This paper gives information about the density, thermal conductivity, specific heat and thermal diffusivity of various lithologies encountered in Cyprus with various relations between these properties being examined through comparison and modeling. The results show that the most important correlation is the one encountered between thermal conductivity and thermal diffusivity with both properties showing similar response to the inlet and outlet flow temperature of vertical and horizontal heat exchangers.

Keywords: Ground heat exchangers, ground thermal conductivity, ground thermal diffusivity, ground thermal properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
1630 Analysis of Conduction-Radiation Heat Transfer in a Planar Medium: Application of the Lattice Boltzmann Method

Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri

Abstract:

In this paper, the 1-D conduction-radiation problem is solved by the lattice Boltzmann method. The effects of various parameters such as the scattering albedo, the conduction–radiation parameter and the wall emissivity are studied. In order to check on the accuracy of the numerical technique employed for the solution of the considered problem, the present numerical code was validated with the published study. The found results are in good agreement with those published

Keywords: Conduction, lattice Boltzmann method, planar medium, radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
1629 Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer

Authors: Sumit Tiwari, Rohit Tripathi, G. N. Tiwari

Abstract:

Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively.

Keywords: Characteristics curve, Photovoltaic, Thermal modelling, Thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
1628 Influence of Thermal Cycle on Temperature Dependent Process Parameters Involved in GTA Welded High Carbon Steel Joints

Authors: J. Dutta, Narendranath S.

Abstract:

In this research article a comprehensive investigation has been carried out to determine the effect of thermal cycle on temperature dependent process parameters developed during gas tungsten arc (GTA) welding of high carbon (AISI 1090) steel butt joints. An experiment based thermal analysis has been performed to obtain the thermal history. We have focused on different thermophysical properties such as thermal conductivity, heat transfer coefficient and cooling rate. Angular torch model has been utilized to find out the surface heat flux and its variation along the fusion zone as well as along the longitudinal direction from fusion boundary. After welding and formation of weld pool, heat transfer coefficient varies rapidly in the vicinity of molten weld bead and heat affected zone. To evaluate the heat transfer coefficient near the fusion line and near the rear end of the plate (low temperature region), established correlation has been implemented and has been compared with empirical correlation which is noted as coupled convective and radiation heat transfer coefficient. Change in thermal conductivity has been visualized by analytical model of moving point heat source. Rate of cooling has been estimated by using 2-dimensional mathematical expression of cooling rate and it has shown good agreement with experimental temperature cycle. Thermophysical properties have been varied randomly within 0 -10s time span.

Keywords: Thermal history, Gas tungsten arc welding, Butt joint, High carbon steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2718
1627 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.

Keywords: Ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
1626 Material Properties Evolution Affecting Demisability for Space Debris Mitigation

Authors: Chetan Mahawar, Sarath Chandran, Sridhar Panigrahi, V. P. Shaji

Abstract:

The ever-growing advancement in space exploration has led to an alarming concern for space debris removal as it restricts further launch operations and adventurous space missions; hence various technologies and methods are explored for re-entry predictions and material selection processes for mitigating space debris. The selection of material and operating conditions is determined with the objective of lightweight structure and ability to demise faster subject to spacecraft survivability during its mission. The various evolving thermal material properties such as emissivity, specific heat capacity, thermal conductivity, radiation intensity, etc. affect demisability of spacecraft. Thus, this paper presents the analysis of evolving thermal material properties of spacecraft, which affect the demisability process and thus estimate demise time using the demisability model by incorporating evolving thermal properties for sensible heating followed by the complete or partial break-up of spacecraft. The demisability analysis thus concludes that the best suitable spacecraft material is based on the least estimated demise time, which fulfills the criteria of design-for-survivability and as well as of design-for-demisability.

Keywords: Demisability, emissivity, lightweight, re-entry, survivability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250