Search results for: self-compacting mortars.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 39

Search results for: self-compacting mortars.

39 Lightweight Materials for Building Finishing

Authors: Sarka Keprdova, Nikol Zizkova

Abstract:

This paper focuses on the presentation of results which were obtained as a part of the project FR-TI 3/742: “System of Lightweight Materials for Finishing of Buildings with Waste Raw Materials”. Attention was paid to the light weighting of polymermodified mortars applicable as adhesives, screeds and repair mortars. In terms of repair mortars, they were ones intended for the sanitation of aerated concrete.

Keywords: Additives, light aggregates, lightweight materials, lightweight mortars, polymer-modified mortars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2927
38 Mechanical Behaviour Analysis of Polyester Polymer Mortars Modified with Recycled GFRP Waste Materials

Authors: M.C.S. Ribeiro, J.P. Meixedo, A. Fiúza, M.L. Dinis, Ana C. Meira Castro, F.J.G. Silva, C. Costa, F. Ferreira, M.R. Alvim

Abstract:

In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.

Keywords: GFRP waste, Mechanical behaviour, Polymer mortars, Recyclability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2657
37 Use of Waste Tire Rubber Alkali-Activated-Based Mortars in Repair of Concrete Structures

Authors: Mohammad Ebrahim Kianifar, Ehsan Ahmadi

Abstract:

Reinforced concrete structures experience local defects such as cracks over their lifetime under various environmental loadings. Consequently, they are repaired by mortars to avoid detrimental effects such as corrosion of reinforcement, which in long-term may lead to strength loss of a member or collapse of structures. However, repaired structures may need multiple repairs due to changes in load distribution, and thus, lack of compatibility between mortar and substrate concrete. On the other hand, waste tire rubber alkali-activated (WTRAA)-based materials have very high potential to be used as repair mortars because of their ductility and flexibility, which may delay failure of repair mortar, and thus, provide sufficient compatibility. Hence, this work presents a study on suitability of WTRAA-based materials as mortars for repair of concrete structures through an experimental program. To this end, WTRAA mortars with 15% aggregate replacement, alkali-activated (AA) mortars, and ordinary mortars are made to repair a number of concrete beams. The WTRAA mortars are composed of slag as base material, sodium hydroxide as alkaline activator, and different gradation of waste tire rubber (fine and coarse gradations). Flexural tests are conducted on the concrete beams repaired by the ordinary, AA, and WTRAA mortars. It is found that, despite having lower compressive strength and modulus of elasticity, the WTRAA and AA mortars increase flexural strength of the repaired beams, give compatible failures, and provide sufficient mortar-concrete interface bondings. The ordinary mortars, however, show incompatible failure modes. This study demonstrates promising application of WTRAA mortars in practical repairs of concrete structures.

Keywords: Alkali-activated mortars, concrete repair, mortar compatibility flexural strength, waste tire rubber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449
36 Mechanical Strengths of Self-Compacting Mortars Prepared with the Pozzolanic Cement in Aggressive Environments

Authors: M. Saidi, I. Djefour, F. Ait Medjber, A. Melouane, A. Gacem

Abstract:

The objective of this research is to study the physical and mechanical properties and durability of self-compacting mortars prepared by substituting a part of cement up to a percentage of 30% pozzolan according to different Blaine specific surface area (SSB1=7000 cm2/g and SSB=9000 cm2/g)). Order to evaluate durability, mortars were subjected to chemical attacks in various aggressive environments, a solution of a mixture of nitric acid and ammonium nitrate (HNO3 + NH4NO3) and a magnesium sulfate salt solution (MgSO4)) with a concentration of 10%, for a period of one month. This study is complemented by a comparative study of the durability of mortars elaborated with sulphate resistant cement (SRC). The results show that these mortars develop long-term, mechanical and chemical resistance better than mortars based Portland cement with 5% gypsum (CEM 1) and SRC. We found that the mass losses are lowest in mortars elaborated with pozzolanic cement (30% substitution with SSB2) in both of chemical attack solutions (3.28% in the solution acid and 1.16% in the salt solution) and the compressive strength gains of 14.68% and 8.5% respectively in the two media. This is due to the action of pozzolan which fixes portlandite to form hydrated calcium silicate (CSH) from the hydration of tricalcic silicate (C3S).

Keywords: Aggressive environments, durability, mechanical strengths, pozzolanic cement, self-compacting mortar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977
35 Recycled Waste Glass Powder as a Partial Cement Replacement in Polymer-Modified Mortars

Authors: Nikol Žižková

Abstract:

The aim of this study was to observe the behavior of polymer-modified cement mortars with regard to the use of a pozzolanic admixture. Polymer-modified mortars (PMMs) containing various types of waste glass (waste packing glass and fluorescent tube glass) were produced always with 20% of cement substituted with a pozzolanic-active material. Ethylene/vinyl acetate copolymer (EVA) was used for polymeric modification. The findings confirm the possibility of using the waste glass examined herein as a partial substitute for cement in the production of PMM, which contributes to the preservation of non-renewable raw material resources and to the efficiency of waste glass material reuse.

Keywords: Recycled waste glass, polymer-modified mortars, pozzolanic admixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
34 Mechanical Properties of Hybrid Cement Based Mortars Containing Two Biopolymers

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco-Torgal

Abstract:

The use of bio-based admixtures on construction materials is a recent trend that is gaining momentum. However, to our knowledge, no studies have been reported concerning the use of biopolymers on hybrid cement based mortars. This paper reports experimental results regarding the study of the influence of mix design of 43 hybrid cement mortars containing two different biopolymers on its mechanical performance. The results show that the use of the biopolymer carrageenan is much more effective than the biopolymer xanthan concerning the increase in compressive strength. An optimum biopolymer content was found.

Keywords: Waste reuse, fly ash, waste glass, hybrid cement, biopolymers, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
33 Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

Authors: M. Saidi, F. Ait-Medjber, B. Safi, M. Samar

Abstract:

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of polycarboxylate superplasticizer on the workability of these and their action deflocculating of the recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0 /5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Keywords: Demolition wastes, recycled coarse aggregate, concrete, workability, mechanical strength, porosity/water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3388
32 Valorization of Industrial Wastes on Hybrid Low Embodied Carbon Cement Based Mortars

Authors: Z. Abdollahnejad, M. Mastali, F. Pacheco-Torgal

Abstract:

Waste reuse is crucial in a context of circular economy and zero waste sustainable needs. Some wastes deserve further studies by the scientific community not only because they are generated in high amount but also because they have a low reuse rate. This paper reports results of 32 hybrid cement mortars based on fly ash and waste glass. They allow to explore the influence of mix design on the cost and on the embodied carbon of the hybrid cement mortars. The embodied carbon data for all constituents were taken from the database Ecoinvent. This study led to the development of a mixture with just 70 kg CO2e.

Keywords: Waste reuse, fly ash, waste glass, hybrid cements, cost, embodied carbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
31 Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests

Authors: Nacim Khelil, Amar Kahil, Said Boukais

Abstract:

The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars.

Keywords: Compressive strength, condensed silica fume, hydrated lime, pozzolanic reaction, UPV testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573
30 Elaboration and Characterization of Self-Compacting Mortar Based Biopolymer

Authors: I. Djefour, M. Saidi, I. Tlemsani, S. Toubal

Abstract:

Lignin is a molecule derived from wood and also generated as waste from the paper industry. With a view to its valorization and protection of the environment, we are interested in its use as a superplasticizer-type adjuvant in mortars and concretes to improve their mechanical strengths. The additives of the concrete have a very strong influence on the properties of the fresh and / or hardened concrete. This study examines the development and use of industrial waste and lignin extracted from a renewable natural source (wood) in cementitious materials. The use of these resources is known at present as a definite resurgence of interest in the development of building materials. Physicomechanical characteristics of mortars are determined by optimization quantity of the natural superplasticizer. The results show that the mechanical strengths of mortars based on natural adjuvant have improved by 20% (64 MPa) for a W/C ratio = 0.4, and the amount of natural adjuvant of dry extract needed is 40 times smaller than commercial adjuvant. This study has a scientific impact (improving the performance of the mortar with an increase in compactness and reduction of the quantity of water), ecological use of the lignin waste generated by the paper industry) and economic reduction of the cost price necessary to elaboration of self-compacting mortars and concretes).

Keywords: Biopolymer, lignin, industrial waste, mechanical resistances, self-compacting mortars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
29 Application of Biomass Ashes as Supplementary Cementitious Materials in the Cement Mortar Production

Authors: S. Šupić, M. Malešev, V. Radonjanin, M. Radeka, M. Laban

Abstract:

The production of low cost and environmentally friendly products represents an important step for developing countries. Biomass is one of the largest renewable energy sources, and Serbia is among the top European countries in terms of the amount of available and unused biomass. Substituting cement with the ashes obtained by the combustion of biomass would reduce the negative impact of concrete industry on the environment and would provide a waste valorization by the reuse of this type of by-product in mortars and concretes manufacture. The study contains data on physical properties, chemical characteristics and pozzolanic properties of obtained biomass ashes: wheat straw ash and mixture of wheat and soya straw ash in Serbia, which were, later, used as supplementary cementitious materials in preparation of mortars. Experimental research of influence of biomass ashes on physical and mechanical properties of cement mortars was conducted. The results indicate that the biomass ashes can be successfully used in mortars as substitutes of cement without compromising their physical and mechanical performances.

Keywords: Biomass, ash, cementitious material, mortar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
28 Flow Performance of Hybrid Cement Based Mortars

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco Torgal

Abstract:

The workability of hybrid alkaline cements is a field of knowledge that still needs further research efforts. This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration.

Keywords: Waste reuse, fly ash, waste glass, hybrid cement, biopolymer, polycarboxylate, flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882
27 Investigation of the Recycling of Geopolymer Cement Wastes as Fine Aggregates in Mortar Mixes

Authors: Napoleana-Anna Chaliasou, Andrew Heath, Kevin Paine

Abstract:

Fly ash-slag based Geopolymer Cement (GPC) is presenting mechanical properties and environmental advantages that make it the predominant “green” alternative to Portland Cement (PC). Although numerous life-cycle analyses praising its environmental advantages, disposal after the end of its life remains as an issue that has been barely explored. The present study is investigating the recyclability of fly ash-slag GPC as aggregate in mortars. The purpose of the study was to evaluate the effect of GPC fine Recycled Aggregates (RA), at replacement levels of 25% and 50%, on the main mechanical properties of PC and GPC mortar mixes. The results were compared with those obtained by corresponding mixes incorporating natural and PC-RA. The main physical properties of GPC-RA were examined and proven to be comparable to those of PC-RA and slightly inferior to those of natural sand. A negligible effect was observed at 28-day compressive and flexural strength of PC mortars with GPC aggregates having a milder effect than PC. As far as GPC mortars are concerned, the influence of GPC aggregates was enhancing for the investigated mechanical properties. Additionally, a screening test showed that recycled geopolymer aggregates are not prone of inducing alkali silica reaction.

Keywords: Concrete recycling, geopolymer cement, recycled concrete aggregates, sustainable concrete technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
26 Evaluation of Corrosion in Steel Reinforced Concrete with Brick Waste

Authors: Julieta D. Chelaru, Maria Gorea

Abstract:

The massive demolition of old buildings in recent years has generated tons of waste, especially brick waste. Thus, a concern of recent research is the use of this waste for the production of environmentally friendly concrete. At the same time, corrosion of the reinforcement steel rebar in classical concrete is a current problem. In this context, in the present paper a study was carried out on the corrosion of metal reinforcement in cement mortars with added brick waste. The corrosion process was analyzed on four compositions of mortars without and with 15%, 25% and 35% brick waste replacing the sand. The brick waste has majority content in SiO2, Al2O3, FeO3 and CaO. The grain size distribution of brick waste was close to that of the sand (dmax = 2 mm). The preparation method of the samples was similar to ordinary mortars. The corrosion action on the rebar in concrete, at different brick waste concentrations, was investigated by electrochemical measurements (polarization curves and electrochemical impedance spectroscopy (EIS)) at 1 month and 26 months. The results obtained at 26 months revealed that the addition of the brick waste in mortar improved the anticorrosion properties in the case of all samples compared with the etalon mortar. The best results were obtained in the case of the sample with 15% brick waste (the efficiency was ≈ 90%). The corrosion intermediary layer formed on the rebar surface was evidenced by SEM-EDX.

Keywords: EIS, steel corrosion, steel reinforced concrete, waste materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 678
25 Formulation of Mortars with Marine Sediments

Authors: Nor-Edine Abriak, Mouhamadou Amar, Mahfoud Benzerzour

Abstract:

The transition to a more sustainable economy is directed by a reduction in the consumption of raw materials in equivalent production. The recovery of byproducts and especially the dredged sediment as mineral addition in cements matrix represents an alternative to reduce raw material consumption and construction sector’s carbon footprint. However, the efficient use of sediment requires adequate and optimal treatment. Several processing techniques have so far been applied in order to improve some physicochemical properties. The heat treatment by calcination was effective in removing the organic fraction and activates the pozzolanic properties. In this article, the effect of the optimized heat treatment of marine sediments in the physico-mechanical and environmental properties of mortars are shown. A finding is that the optimal substitution of a portion of cement by treated sediments by calcination at 750 °C helps to maintain or improve the mechanical properties of the cement matrix in comparison with a standard reference mortar. The use of calcined sediment enhances mortar behavior in terms of mechanical strength and durability. From an environmental point of view and life cycle, mortars formulated containing treated sediments are considered inert with respect to the inert waste storage facilities reference (ISDI-France).

Keywords: Sediment, calcination, cement, reuse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887
24 Mechanical Properties and Chloride Diffusion of Ceramic Waste Aggregate Mortar Containing Ground Granulated Blast–Furnace Slag

Authors: H. Higashiyama, M. Sappakittipakorn, M. Mizukoshi, O. Takahashi

Abstract:

Ceramic Waste Aggregates (CWAs) were made from electric porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to develop the CWA mortar as an eco–efficient, ground granulated blast–furnace slag (GGBS) as a Supplementary Cementitious Material (SCM) was incorporated. The water–to–binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The cement of the CWA mortar was replaced by GGBS at 20 and 40% by volume (at about 18 and 37% by weight). Mechanical properties of compressive and splitting tensile strengths, and elastic modulus were evaluated at the age of 7, 28, and 91 days. Moreover, the chloride ingress test was carried out on the CWA mortars in a 5.0% NaCl solution for 48 weeks. The chloride diffusion was assessed by using an electron probe microanalysis (EPMA). To consider the relation of the apparent chloride diffusion coefficient and the pore size, the pore size distribution test was also performed using a mercury intrusion porosimetry at the same time with the EPMA. The compressive strength of the CWA mortars with the GGBS was higher than that without the GGBS at the age of 28 and 91 days. The resistance to the chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level.

Keywords: Ceramic waste aggregate, Chloride diffusion, GGBS, Pore size distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
23 Mechanical Behavior of Recycled Mortars Manufactured from Moisture Correction Using the Halogen Light Thermogravimetric Balance as an Alternative to the Traditional ASTM C 128 Method

Authors: Diana Gómez-Cano, J. C. Ochoa-Botero, Roberto Bernal Correa, Yhan Paul Arias

Abstract:

To obtain high mechanical performance, the fresh conditions of a mortar are decisive. Measuring the absorption of aggregates used in mortar mixes is a fundamental requirement for proper design of the mixes prior to their placement in construction sites. In this sense, absorption is a determining factor in the design of a mix because it conditions the amount of water, which in turn affects the water/cement ratio and the final porosity of the mortar. Thus, this work focuses on the mechanical behavior of recycled mortars manufactured from moisture correction using the Thermogravimetric Balancing Halogen Light (TBHL) technique in comparison with the traditional ASTM C 128 International Standard method. The advantages of using the TBHL technique are favorable in terms of reduced consumption of resources such as materials, energy and time. The results show that in contrast to the ASTM C 128 method, the TBHL alternative technique allows obtaining a higher precision in the absorption values of recycled aggregates, which is reflected not only in a more efficient process in terms of sustainability in the characterization of construction materials, but also in an effect on the mechanical performance of recycled mortars.

Keywords: Alternative raw materials, halogen light, recycled mortar, resources optimization, water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
22 Effect of Na2O Content on Durability of Geopolymer Mortars in Sulphuric Acid

Authors: Suresh Thokchom, Partha Ghosh, Somnath Ghosh

Abstract:

This paper presents the findings of an experimental investigation to study the effect of alkali content in geopolymer mortar specimens exposed to sulphuric acid. Geopolymer mortar specimens were manufactured from Class F fly ash by activation with a mixture of sodium hydroxide and sodium silicate solution containing 5% to 8% Na2O. Durability of specimens were assessed by immersing them in 10% sulphuric acid solution and periodically monitoring surface deterioration and depth of dealkalization, changes in weight and residual compressive strength over a period of 24 weeks. Microstructural changes in the specimens were studied with Scanning electron microscopy (SEM) and EDAX. Alkali content in the activator solution significantly affects the durability of fly ash based geopolymer mortars in sulphuric acid. Specimens manufactured with higher alkali content performed better than those manufactured with lower alkali content. After 24 weeks in sulphuric acid, specimen with 8% alkali still recorded a residual strength as high as 55%.

Keywords: Alkali content, acid attack, compressive strength, geopolymer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2634
21 Influence of Gum Acacia Karroo on Some Mechanical Properties of Cement Mortars and Concrete

Authors: Rose Mbugua, Ramadhan Wanjala, Julius Ndambuki

Abstract:

Natural admixtures provide concrete with enhanced properties but their processing end up making them very expensive resulting in increase to cost of concrete. In this study the effect of Gum from Acacia Karroo (GAK) as set-retarding admixture in cement pastes was studied. The possibility of using GAK as water reducing admixture both in cement mortar concrete was also investigated. Cement pastes with different dosages of GAK were prepared to measure the setting time using different dosages. Compressive strength of cement mortars with 0.7, 0.8 and 0.9% weight of cement and w/c ratio of 0.5 were compared to those with water cement (w/c) ratio of 0.44 but same dosage of GAK. Concrete samples were prepared using higher dosages of GAK (1, 2 and 3% wt of cement) and a water bidder (w/b) of 0.61 were compared to those with the same GAK dosage but with reduced w/b ratio. There was increase in compressive strength of 9.3% at 28 days for cement mortar samples with 0.9% dosage of GAK and reduced w/c ratio.

Keywords: Compressive strength, Gum Acacia Karroo, retarding admixture, setting time, water-reducing admixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
20 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: Mineralogical structure, Pozzolanic reactivity, quartz, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
19 Comparative Sulphate Resistance of Pozzolanic Cement Mortars

Authors: Mahmud Abba Tahir

Abstract:

This is report on experiment out to compare the sulphate resistance of sand mortar made with five different pozzolanic cement. The pozzolanic cement were prepared by blending powered burnt bricks from the Adamawa, Makurdi, Kano, Kaduna and Niger bricks factories with ordinary Portland cement in the ratio 1:4. Sand –pozzolanic cement mortars of mix ratio 1:6 and 1:3 with water-cement ratio of 0.65 and 0.40 respectively were used to prepare cubes and bars specimens. 150 mortar cubes of size 70mm x 70mm x 70mm and 35 mortar bars of 15mm x 15mm x 100mm dimensions were cast and cured for 28 days. The cured specimens then immersed in the solutions of K2SO4, (NH4)2SO4 and water for 28 days and then tested. The compressive strengths of cubes in water increased by 34% while those in the sulphate solutions decreased. Strength decreases of the cubes, cracking and warping of bars immersed in K2SO4 were less than those in (NH4)2SO4. Specimens made with Niger and Makurdi pulverized burnt bricks experienced less effect of the sulphates and can therefore be used as pozzolan in mortar and concrete to resist sulphate.

Keywords: Burnt bricks powder, comparative, pozzolanic cement, sulphates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
18 The Impact of Alumina Cement on Properties of Portland Cement Slurries and Mortars

Authors: Krzysztof Zieliński, Dariusz Kierzek

Abstract:

The addition of a small amount of alumina cement to Portland cement results in immediate setting, a rapid increase in the compressive strength and a clear increase of the adhesion to concrete substrate. This phenomenon is used, among others, for the production of liquid floor self-levelling compounds. Alumina cement is several times more expensive than Portland cement and is a component having a significant impact on prices of products manufactured with its use. For the production of liquid floor self-levelling compounds, low-alumina cement containing approximately 40% Al2O3 is normally used. The aim of the study was to determine the impact of Portland cement with the addition of alumina cement on the basic physical and mechanical properties of cement slurries and mortars. CEM I 42.5R and three types of alumina cement containing 40%, 50% and 70% of Al2O3 were used for the tests. Mixes containing 4%, 6%, 8%, 10% and 12% of different varieties of alumina cement were prepared; for which, the time of initial and final setting, compressive and flexural strength and adhesion to concrete substrate were determined. The analysis of the obtained test results showed that a similar immediate setting effect and clearly better adhesion strength can be obtained using the addition of 6% of high-alumina cement than 12% of low-alumina cement. As the prices of these cements are similar, this can give significant financial savings in the production of liquid floor self-levelling compounds.

Keywords: Alumina cement, immediate setting, compression strength, adhesion to substrate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
17 Compressive Strength and Workability Characteristics of Low-Calcium Fly ash-based Self-Compacting Geopolymer Concrete

Authors: M. Fareed Ahmed, M. Fadhil Nuruddin, Nasir Shafiq

Abstract:

Due to growing environmental concerns of the cement industry, alternative cement technologies have become an area of increasing interest. It is now believed that new binders are indispensable for enhanced environmental and durability performance. Self-compacting Geopolymer concrete is an innovative method and improved way of concreting operation that does not require vibration for placing it and is produced by complete elimination of ordinary Portland cement. This paper documents the assessment of the compressive strength and workability characteristics of low-calcium fly ash based selfcompacting geopolymer concrete. The essential workability properties of the freshly prepared Self-compacting Geopolymer concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, V-funnel, L-box and J-ring test methods. The fundamental requirements of high flowability and segregation resistance as specified by guidelines on Self Compacting Concrete by EFNARC were satisfied. In addition, compressive strength was determined and the test results are included here. This paper also reports the effect of extra water, curing time and curing temperature on the compressive strength of self-compacting geopolymer concrete. The test results show that extra water in the concrete mix plays a significant role. Also, longer curing time and curing the concrete specimens at higher temperatures will result in higher compressive strength.

Keywords: Fly ash, Geopolymer Concrete, Self-compactingconcrete, Self-compacting Geopolymer concrete

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4582
16 Acid Attack on Cement Mortars Modified with Rubber Aggregates and EVA Polymer Binder

Authors: Konstantinos Sotiriadis, Michael Tupý, Nikol Žižková, Vít Petránek

Abstract:

The acid attack on cement mortars modified with rubber aggregates and EVA polymer binder was studied. Mortar specimens were prepared using a type CEM I 42.5 Portland cement and siliceous sand, as well as by substituting 25% of sand with shredded used automobile tires, and by adding EVA polymer in two percentages (5% and 10% of cement mass). Some specimens were only air cured, at laboratory conditions, and their compressive strength and water absorption were determined. The rest specimens were stored in acid solutions (HCl, H2SO4, HNO3) after 28 days of initial curing, and stored at laboratory temperature. Compressive strength tests, mass measurements and visual inspection took place for 28 days. Compressive strength and water absorption of the air-cured specimens were significantly decreased when rubber aggregates are used. The addition of EVA polymer further reduced water absorption, while had no important impact on strength. Compressive strength values were affected in a greater extent by hydrochloric acid solution, followed by sulfate and nitric acid solutions. The addition of EVA polymer decreased compressive strength loss for the specimens with rubber aggregates stored in hydrochloric and nitric acid solutions. The specimens without polymer binder showed similar mass loss, which was higher in sulfate acid solution followed by hydrochloric and nitric acid solutions. The use of EVA polymer delayed mass loss, while its content did not affect it significantly.

Keywords: Acid attack, mortar, EVA polymer, rubber aggregates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
15 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials

Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin

Abstract:

Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.

Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
14 Research and Development of Lightweight Repair Mortars with Focus on Their Resistance to High Temperatures

Authors: Tomáš Melichar, Jiří Bydžovský, Vít Černý

Abstract:

In this article our research focused on study of basic physical and mechanical parameters of polymer-cement repair materials is presented. Namely the influence of applied aggregates in combination with active admixture is specially considered. New formulas which were exposed in ambient with temperature even to 1000°C were suggested. Subsequently densities and strength characteristics including their changes were evaluated. Selected samples were analyzed using electron microscope. The positive influence of porous aggregates based on sintered ash was definitely demonstrated. Further it was found than in terms of thermal resistance the effective micro silica amount represents 5% to 7.5% of cement weight.

Keywords: Aggregate, ash, high, lightweight, microsilica, mortar, polymer-cement, repair, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
13 Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin

Authors: M. Boháč, R. Novotný, F. Frajkorová, R. S. Yadav, T. Opravil, M. Palou

Abstract:

Properties of Portland cement mixtures with various fractions of metakaolin were studied. 10% of Portland cement CEM I 42.5 R was replaced by different fractions of high reactivity metakaolin with defined chemical and mineralogical properties. Various fractions of metakaolin were prepared by jet mill classifying system. There is a clear trend between fineness of metakaolin and hydration heat development. Due to metakaolin presence in mixtures the compressive strength development of mortars is rather slower for coarser fractions but 28-day flexural strengths are improved for all fractions of metakaoline used in mixtures compared to reference sample of pure Portland cement. Yield point, plastic viscosity and adhesion of fresh pastes are considerably influenced by fineness of metakaolin used in cement pastes.

Keywords: Calorimetry, cement, metakaolin fineness, rheology, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698
12 Study of Metakaolin-Based Geopolymer with Addition of Polymer Admixtures

Authors: Olesia Mikhailova, Pavel Rovnaník

Abstract:

In the present work, metakaolin-based geopolymer including different polymer admixtures was studied. Different types of commercial polymer admixtures VINNAPAS® and polyethylene glycol of different relative molecular weight were used as polymer admixtures. The main objective of this work is to investigate the influence of different types of admixtures on the properties of metakaolin-based geopolymer mortars considering their different dosage. Mechanical properties, such as flexural and compressive strength were experimentally determined. Also, study of the microstructure of selected specimens by using a scanning electron microscope was performed. The results showed that the specimen with addition of 1.5% of VINNAPAS® 7016 F and 10% of polyethylene glycol 400 achieved maximum mechanical properties.

Keywords: Metakaolin, geopolymer, polymer admixtures, mechanical properties, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
11 Study of Fly Ash Geopolymer Based Composites with Polyester Waste Addition

Authors: Konstantinos Sotiriadis, Olesia Mikhailova

Abstract:

In the present work, fly ash geopolymer based composites including polyester (PES) waste were studied. Specimens of three compositions were prepared: (a) fly ash geopolymer with 5% PES waste; (b) fly ash geopolymer mortar with 5% PES waste; (c) fly ash geopolymer mortar with 6.25% PES waste. Compressive and bending strength measurements, water absorption test and determination of thermal conductivity coefficient were performed. The results showed that the addition of sand in a mixture of geopolymer with 5% PES content led to higher compressive strength, while it increased water absorption and reduced thermal conductivity coefficient. The increase of PES addition in geopolymer mortars resulted in a more dense structure, indicated by the increase of strength and thermal conductivity and the decrease of water absorption.

Keywords: Fly ash, geopolymers, polyester waste, composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
10 Effect of Incorporating Silica Fume in Fly Ash Geopolymers

Authors: Suresh Thokchom, Debabrata Dutta, Somnath Ghosh

Abstract:

This paper presents results of an experimental study performed to investigate effect of incorporating silica fume on physico-mechanical properties and durability of resulting fly ash geopolymers. Geopolymer specimens were prepared by activating fly ash incorporated with additional silica fume in the range of 2.5% to 5%, with a mixture of sodium hydroxide and sodium silicate solution having Na2O content of 8%. For studying durability, 10% magnesium sulphate solution was used to immerse the specimens up to a period of 15 weeks during which visual observation, weight changes and strength changes were monitored regularly. Addition of silica fume lowers performance of geopolymer pastes. However, in mortars, addition of silica fume significantly enhanced physico-mechanical properties and durability.

Keywords: Fly ash, silica fume, geopolymer, apparent porosity, sorptivity, compressive strength, durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3705