Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1194

Search results for: reliability constraints.

1194 Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis

Authors: Essa Abrahim Abdulgader Saleem, Thien-My Dao

Abstract:

The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA.

Keywords: Genetic algorithm, optimization, reliability, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
1193 Reliability-Based Topology Optimization Based on Evolutionary Structural Optimization

Authors: Sang-Rak Kim, Jea-Yong Park, Won-Goo Lee, Jin-Shik Yu, Seog-Young Han

Abstract:

This paper presents a Reliability-Based Topology Optimization (RBTO) based on Evolutionary Structural Optimization (ESO). An actual design involves uncertain conditions such as material property, operational load and dimensional variation. Deterministic Topology Optimization (DTO) is obtained without considering of the uncertainties related to the uncertainty parameters. However, RBTO involves evaluation of probabilistic constraints, which can be done in two different ways, the reliability index approach (RIA) and the performance measure approach (PMA). Limit state function is approximated using Monte Carlo Simulation and Central Composite Design for reliability analysis. ESO, one of the topology optimization techniques, is adopted for topology optimization. Numerical examples are presented to compare the DTO with RBTO.

Keywords: Evolutionary Structural Optimization, PerformanceMeasure Approach, Reliability-Based Topology Optimization, Reliability Index Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
1192 Efficient Design Optimization of Multi-State Flow Network for Multiple Commodities

Authors: Yu-Cheng Chou, Po Ting Lin

Abstract:

The network of delivering commodities has been an important design problem in our daily lives and many transportation applications. The delivery performance is evaluated based on the system reliability of delivering commodities from a source node to a sink node in the network. The system reliability is thus maximized to find the optimal routing. However, the design problem is not simple because (1) each path segment has randomly distributed attributes; (2) there are multiple commodities that consume various path capacities; (3) the optimal routing must successfully complete the delivery process within the allowable time constraints. In this paper, we want to focus on the design optimization of the Multi-State Flow Network (MSFN) for multiple commodities. We propose an efficient approach to evaluate the system reliability in the MSFN with respect to randomly distributed path attributes and find the optimal routing subject to the allowable time constraints. The delivery rates, also known as delivery currents, of the path segments are evaluated and the minimal-current arcs are eliminated to reduce the complexity of the MSFN. Accordingly, the correct optimal routing is found and the worst-case reliability is evaluated. It has been shown that the reliability of the optimal routing is at least higher than worst-case measure. Two benchmark examples are utilized to demonstrate the proposed method. The comparisons between the original and the reduced networks show that the proposed method is very efficient.

Keywords: Multiple Commodities, Multi-State Flow Network (MSFN), Time Constraints, Worst-Case Reliability (WCR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
1191 Multi-Objective Optimization of Combined System Reliability and Redundancy Allocation Problem

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents established 3n enumeration procedure for mixed integer optimization problems for solving multi-objective reliability and redundancy allocation problem subject to design constraints. The formulated problem is to find the optimum level of unit reliability and the number of units for each subsystem. A number of illustrative examples are provided and compared to indicate the application of the superiority of the proposed method.

Keywords: Integer programming, mixed integer programming, multi-objective optimization, reliability redundancy allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 441
1190 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities

Authors: Tomoaki Hashimoto

Abstract:

Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.

Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
1189 GEP Considering Purchase Prices, Profits of IPPs and Reliability Criteria Using Hybrid GA and PSO

Authors: H. Shayeghi, H. Hosseini, A. Shabani, M. Mahdavi

Abstract:

In this paper, optimal generation expansion planning (GEP) is investigated considering purchase prices, profits of independent power producers (IPPs) and reliability criteria using a new method based on hybrid coded Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). In this approach, optimal purchase price of each IPP is obtained by HCGA and reliability criteria are calculated by PSO technique. It should be noted that reliability criteria and the rate of carbon dioxide (CO2) emission have been considered as constraints of the GEP problem. Finally, the proposed method has been tested on the case study system. The results evaluation show that the proposed method can simply obtain optimal purchase prices of IPPs and is a fast method for calculation of reliability criteria in expansion planning. Also, considering the optimal purchase prices and profits of IPPs in generation expansion planning are caused that the expansion costs are decreased and the problem is solved more exactly.

Keywords: GEP Problem, IPPs, Reliability Criteria, GA, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
1188 Operation Strategy of Multi-Energy Storage System Considering Power System Reliability

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

As the penetration of Energy Storage System (ESS) increases in the power system due to higher performance and lower cost than ever, ESS is expanding its role to the ancillary service as well as the storage of extra energy from the intermittent renewable energy resources. For multi-ESS with different capacity and SOC level each other, it is required to make the optimal schedule of SOC level use the multi-ESS effectively. This paper proposes the energy allocation method for the multiple battery ESS with reliability constraint, in order to make the ESS discharge the required energy as long as possible. A simple but effective method is proposed in this paper, to satisfy the power for the spinning reserve requirement while improving the system reliability. Modelling of ESS is also proposed, and reliability is evaluated by using the combined reliability model which includes the proposed ESS model and conventional generation one. In the case study, it can be observed that the required power is distributed to each ESS adequately and accordingly, the SOC is scheduled to improve the reliability indices such as Loss of Load Probability (LOLP) and Loss of Load Expectation (LOLE).

Keywords: Multiple energy storage system, energy allocation method, SOC schedule, reliability constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
1187 From Forbidden States to Linear Constraints

Authors: M. Zareiee, A. Dideban, P. Nazemzadeh

Abstract:

This paper deals with the problem of constructing constraints in non safe Petri Nets and then reducing the number of the constructed constraints. In a system, assigning some linear constraints to forbidden states is possible. Enforcing these constraints on the system prevents it from entering these states. But there is no a systematic method for assigning constraints to forbidden states in non safe Petri Nets. In this paper a useful method is proposed for constructing constraints in non safe Petri Nets. But when the number of these constraints is large enforcing them on the system may complicate the Petri Net model. So, another method is proposed for reducing the number of constructed constraints.

Keywords: discrete event system, Supervisory control, Petri Net, Constraint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
1186 Distributed Generator Placement for Loss Reduction and Improvement in Reliability

Authors: Priyanka Paliwal, N.P. Patidar

Abstract:

Distributed Power generation has gained a lot of attention in recent times due to constraints associated with conventional power generation and new advancements in DG technologies .The need to operate the power system economically and with optimum levels of reliability has further led to an increase in interest in Distributed Generation. However it is important to place Distributed Generator on an optimum location so that the purpose of loss minimization and voltage regulation is dully served on the feeder. This paper investigates the impact of DG units installation on electric losses, reliability and voltage profile of distribution networks. In this paper, our aim would be to find optimal distributed generation allocation for loss reduction subjected to constraint of voltage regulation in distribution network. The system is further analyzed for increased levels of Reliability. Distributed Generator offers the additional advantage of increase in reliability levels as suggested by the improvements in various reliability indices such as SAIDI, CAIDI and AENS. Comparative studies are performed and related results are addressed. An analytical technique is used in order to find the optimal location of Distributed Generator. The suggested technique is programmed under MATLAB software. The results clearly indicate that DG can reduce the electrical line loss while simultaneously improving the reliability of the system.

Keywords: AENS, CAIDI, Distributed Generation, lossreduction, Reliability, SAIDI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915
1185 Analysis of Testing and Operational Software Reliability in SRGM based on NHPP

Authors: S. Thirumurugan, D. R. Prince Williams

Abstract:

Software Reliability is one of the key factors in the software development process. Software Reliability is estimated using reliability models based on Non Homogenous Poisson Process. In most of the literature the Software Reliability is predicted only in testing phase. So it leads to wrong decision-making concept. In this paper, two Software Reliability concepts, testing and operational phase are studied in detail. Using S-Shaped Software Reliability Growth Model (SRGM) and Exponential SRGM, the testing and operational reliability values are obtained. Finally two reliability values are compared and optimal release time is investigated.

Keywords: Error Detection Rate, Estimation of Parameters, Instantaneous Failure Rate, Mean Value Function, Non Homogenous Poisson Process (NHPP), Software Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
1184 Techniques for Reliability Evaluation in Distribution System Planning

Authors: T. Lantharthong, N. Phanthuna

Abstract:

This paper presents reliability evaluation techniques which are applied in distribution system planning studies and operation. Reliability of distribution systems is an important issue in power engineering for both utilities and customers. Reliability is a key issue in the design and operation of electric power distribution systems and load. Reliability evaluation of distribution systems has been the subject of many recent papers and the modeling and evaluation techniques have improved considerably.

Keywords: Reliability Evaluation, Optimization Technique, Reliability Indices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4290
1183 Approach for Demonstrating Reliability Targets for Rail Transport during Low Mileage Accumulation in the Field: Methodology and Case Study

Authors: Nipun Manirajan, Heeralal Gargama, Sushil Guhe, Manoj Prabhakaran

Abstract:

In railway industry, train sets are designed based on contractual requirements (mission profile), where reliability targets are measured in terms of mean distance between failures (MDBF). However, during the beginning of revenue services, trains do not achieve the designed mission profile distance (mileage) within the timeframe due to infrastructure constraints, scarcity of commuters or other operational challenges thereby not respecting the original design inputs. Since trains do not run sufficiently and do not achieve the designed mileage within the specified time, car builder has a risk of not achieving the contractual MDBF target. This paper proposes a constant failure rate based model to deal with the situations where mileage accumulation is not a part of the design mission profile. The model provides appropriate MDBF target to be demonstrated based on actual accumulated mileage. A case study of rolling stock running in the field is undertaken to analyze the failure data and MDBF target demonstration during low mileage accumulation. The results of case study prove that with the proposed method, reliability targets are achieved under low mileage accumulation.

Keywords: Mean distance between failures, mileage based reliability, reliability target normalization, rolling stock reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
1182 New Design Constraints of FIR Filter on Magnitude and Phase of Error Function

Authors: Raghvendra Kumar, Lillie Dewan

Abstract:

Exchange algorithm with constraints on magnitude and phase error separately in new way is presented in this paper. An important feature of the algorithms presented in this paper is that they allow for design constraints which often arise in practical filter design problems. Meeting required minimum stopband attenuation or a maximum deviation from the desired magnitude and phase responses in the passbands are common design constraints that can be handled by the methods proposed here. This new algorithm may have important advantages over existing technique, with respect to the speed and stability of convergence, memory requirement and low ripples.

Keywords: Least square estimation, Constraints, Exchange algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
1181 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution

Authors: Tomoaki Hashimoto

Abstract:

In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research fields. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method for unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with unknown probability distribution.

Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
1180 Reliability Evaluation using Triangular Intuitionistic Fuzzy Numbers Arithmetic Operations

Authors: G. S. Mahapatra, T. K. Roy

Abstract:

In general fuzzy sets are used to analyze the fuzzy system reliability. Here intuitionistic fuzzy set theory for analyzing the fuzzy system reliability has been used. To analyze the fuzzy system reliability, the reliability of each component of the system as a triangular intuitionistic fuzzy number is considered. Triangular intuitionistic fuzzy number and their arithmetic operations are introduced. Expressions for computing the fuzzy reliability of a series system and a parallel system following triangular intuitionistic fuzzy numbers have been described. Here an imprecise reliability model of an electric network model of dark room is taken. To compute the imprecise reliability of the above said system, reliability of each component of the systems is represented by triangular intuitionistic fuzzy numbers. Respective numerical example is presented.

Keywords: Fuzzy set, Intuitionistic fuzzy number, Systemreliability, Triangular intuitionistic fuzzy number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903
1179 Sensitivity Analysis in Power Systems Reliability Evaluation

Authors: A.R Alesaadi, M. Nafar, A.H. Gheisari

Abstract:

In this paper sensitivity analysis is performed for reliability evaluation of power systems. When examining the reliability of a system, it is useful to recognize how results change as component parameters are varied. This knowledge helps engineers to understand the impact of poor data, and gives insight on how reliability can be improved. For these reasons, a sensitivity analysis can be performed. Finally, a real network was used for testing the presented method.

Keywords: sensitivity analysis, reliability evaluation, powersystems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
1178 A Feasible Path Selection QoS Routing Algorithm with two Constraints in Packet Switched Networks

Authors: P.S.Prakash, S.Selvan

Abstract:

Over the past several years, there has been a considerable amount of research within the field of Quality of Service (QoS) support for distributed multimedia systems. One of the key issues in providing end-to-end QoS guarantees in packet networks is determining a feasible path that satisfies a number of QoS constraints. The problem of finding a feasible path is NPComplete if number of constraints is more than two and cannot be exactly solved in polynomial time. We proposed Feasible Path Selection Algorithm (FPSA) that addresses issues with pertain to finding a feasible path subject to delay and cost constraints and it offers higher success rate in finding feasible paths.

Keywords: feasible path, multiple constraints, path selection, QoS routing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
1177 Optimal SSSC Placement to ATC Enhancing in Power Systems

Authors: Sh. Javadi, A. Alijani, A.H. Mazinan

Abstract:

This paper reviews the optimization available transmission capability (ATC) of power systems using a device of FACTS named SSSC equipped with energy storage devices. So that, emplacement and improvement of parameters of SSSC will be illustrated. Thus, voltage magnitude constraints of network buses, line transient stability constraints and voltage breakdown constraints are considered. To help the calculations, a comprehensive program in DELPHI is provided, which is able to simulate and trace the parameters of SSSC has been installed on a specific line. Furthermore, the provided program is able to compute ATC, TTC and maximum value of their enhancement after using SSSC.

Keywords: available transmission capability (ATC), total transmission capability (TTC), voltage constraints, stability constraints, FACTS, SSSC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
1176 Perceived Constraints on Sport Participation among Young Koreans in Australia

Authors: Jae Won Kang

Abstract:

The purpose of this study was to examine a broader range of sport constraints perceived by young Koreans in Australia who may need to adjust to changing behavioral expectations due to the socio-cultural transitions. Regardless of gender, in terms of quantitative findings, the most important participation constraints within the seven categories were resources, access, interpersonal, affective, religious, socio-cultural, and physical in that order. The most important constraining items were a lack of time, access, information, adaptive skills, and parental and family support in that order. Qualitative research found young Korean’s participation constraints among three categories (time, parental control and interpersonal constraints). It is possible that different ethnic groups would be constrained by different factors; however, this is outside the scope of this study.

Keywords: Constraints, cultural adjustment, Sport, Young Koreans in Australia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
1175 Software Reliability Prediction Model Analysis

Authors: L. Mirtskhulava, M. Khunjgurua, N. Lomineishvili, K. Bakuria

Abstract:

Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.

Keywords: Exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
1174 Building the Reliability Prediction Model of Component-Based Software Architectures

Authors: Pham Thanh Trung, Huynh Quyet Thang

Abstract:

Reliability is one of the most important quality attributes of software. Based on the approach of Reussner and the approach of Cheung, we proposed the reliability prediction model of component-based software architectures. Also, the value of the model is shown through the experimental evaluation on a web server system.

Keywords: component-based architecture, reliability prediction model, software reliability engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
1173 Reducing the Number of Constraints in Non Safe Petri Net

Authors: M. Zareiee, A. Dideban

Abstract:

This paper addresses the problem of forbidden states in non safe Petri Nets. In the system, for preventing it from entering the forbidden states, some linear constraints can be assigned to them. Then these constraints can be enforced on the system using control places. But when the number of constraints in the system is large, a large number of control places must be added to the model of system. This concept complicates the model of system. There are some methods for reducing the number of constraints in safe Petri Nets. But there is no a systematic method for non safe Petri Nets. In this paper we propose a method for reducing the number of constraints in non safe Petri Nets which is based on solving an integer linear programming problem.

Keywords: discrete event system, Supervisory control, Petri Net, Constraint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
1172 Combinatorial Approach to Reliability Evaluation of Network with Unreliable Nodes and Unreliable Edges

Authors: Y. Shpungin

Abstract:

Estimating the reliability of a computer network has been a subject of great interest. It is a well known fact that this problem is NP-hard. In this paper we present a very efficient combinatorial approach for Monte Carlo reliability estimation of a network with unreliable nodes and unreliable edges. Its core is the computation of some network combinatorial invariants. These invariants, once computed, directly provide pure and simple framework for computation of network reliability. As a specific case of this approach we obtain tight lower and upper bounds for distributed network reliability (the so called residual connectedness reliability). We also present some simulation results.

Keywords: Combinatorial invariants, Monte Carlo simulation, reliability, unreliable nodes and unreliable edges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
1171 Fundamental Concepts of Theory of Constraints: An Emerging Philosophy

Authors: Ajay Gupta, Arvind Bhardwaj, Arun Kanda

Abstract:

Dr Eliyahu Goldratt has done the pioneering work in the development of Theory of Constraints. Since then, many more researchers around the globe are working to enhance this body of knowledge. In this paper, an attempt has been made to compile the salient features of this theory from the work done by Goldratt and other researchers. This paper will provide a good starting point to the potential researchers interested to work in Theory of Constraints. The paper will also help the practicing managers by clarifying their concepts on the theory and will facilitate its successful implementation in their working areas.

Keywords: Drum-Buffer-Rope, Goldratt, ProductionScheduling, Theory of Constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3165
1170 Bounds on Reliability of Parallel Computer Interconnection Systems

Authors: Ranjan Kumar Dash, Chita Ranjan Tripathy

Abstract:

The evaluation of residual reliability of large sized parallel computer interconnection systems is not practicable with the existing methods. Under such conditions, one must go for approximation techniques which provide the upper bound and lower bound on this reliability. In this context, a new approximation method for providing bounds on residual reliability is proposed here. The proposed method is well supported by two algorithms for simulation purpose. The bounds on residual reliability of three different categories of interconnection topologies are efficiently found by using the proposed method

Keywords: Parallel computer network, reliability, probabilisticgraph, interconnection networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185
1169 Wireless Sensor Networks for Long Distance Pipeline Monitoring

Authors: Augustine C. Azubogu, Victor E. Idigo, Schola U. Nnebe, Obinna S. Oguejiofor, Simon E.

Abstract:

The main goal of this seminal paper is to introduce the application of Wireless Sensor Networks (WSN) in long distance infrastructure monitoring (in particular in pipeline infrastructure monitoring) – one of the on-going research projects by the Wireless Communication Research Group at the department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka. The current sensor network architectures for monitoring long distance pipeline infrastructures are previewed. These are wired sensor networks, RF wireless sensor networks, integrated wired and wireless sensor networks. The reliability of these architectures is discussed. Three reliability factors are used to compare the architectures in terms of network connectivity, continuity of power supply for the network, and the maintainability of the network. The constraints and challenges of wireless sensor networks for monitoring and protecting long distance pipeline infrastructure are discussed.

Keywords: Connectivity, maintainability, reliability, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4833
1168 Structural Reliability of Existing Structures: A Case Study

Authors: Z. Sakka, I. Assakkaf, T. Al-Yaqoub, J. Parol

Abstract:

reliability-based methodology for the assessment and evaluation of reinforced concrete (R/C) structural elements of concrete structures is presented herein. The results of the reliability analysis and assessment for R/C structural elements were verified by the results obtained through deterministic methods. The outcomes of the reliability-based analysis were compared against currently adopted safety limits that are incorporated in the reliability indices β’s, according to international standards and codes. The methodology is based on probabilistic analysis using reliability concepts and statistics of the main random variables that are relevant to the subject matter, and for which they are to be used in the performance-function equation(s) associated with the structural elements under study. These methodology techniques can result in reliability index β, which is commonly known as the reliability index or reliability measure value that can be utilized to assess and evaluate the safety, human risk, and functionality of the structural component. Also, these methods can result in revised partial safety factor values for certain target reliability indices that can be used for the purpose of redesigning the R/C elements of the building and in which they could assist in considering some other remedial actions to improve the safety and functionality of the member.

Keywords: Concrete Structures, FORM, Monte Carlo Simulation, Structural Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2897
1167 The Use of Degradation Measures to Design Reliability Test Plans

Authors: Stephen V. Crowder, Jonathan W. Lane

Abstract:

With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. In this work we present a case study involving an electronic component subject to degradation. The data, consisting of 42 degradation paths of cycles to failure, are first used to estimate a reliability function. Bootstrapping techniques are then used to perform power studies and develop a minimal reliability test plan for future production of this component. 

Keywords: Degradation Measure, Time to Failure Distribution, Bootstrap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
1166 A Bootstrap's Reliability Measure on Tests of Hypotheses

Authors: Al Jefferson J. Pabelic, Dennis A. Tarepe

Abstract:

Bootstrapping has gained popularity in different tests of hypotheses as an alternative in using asymptotic distribution if one is not sure of the distribution of the test statistic under a null hypothesis. This method, in general, has two variants – the parametric and the nonparametric approaches. However, issues on reliability of this method always arise in many applications. This paper addresses the issue on reliability by establishing a reliability measure in terms of quantiles with respect to asymptotic distribution, when this is approximately correct. The test of hypotheses used is Ftest. The simulated results show that using nonparametric bootstrapping in F-test gives better reliability than parametric bootstrapping with relatively higher degrees of freedom.

Keywords: F-test, nonparametric bootstrapping, parametric bootstrapping, reliability measure, tests of hypotheses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
1165 Power Generation Scheduling of Thermal Units Considering Gas Pipelines Constraints

Authors: Sara Mohtashami, Habib Rajabi Mashhadi

Abstract:

With the growth of electricity generation from gas energy gas pipeline reliability can substantially impact the electric generation. A physical disruption to pipeline or to a compressor station can interrupt the flow of gas or reduce the pressure and lead to loss of multiple gas-fired electric generators, which could dramatically reduce the supplied power and threaten the power system security. Gas pressure drops during peak loading time on pipeline system, is a common problem in network with no enough transportation capacity which limits gas transportation and causes many problem for thermal domain power systems in supplying their demand. For a feasible generation scheduling planning in networks with no sufficient gas transportation capacity, it is required to consider gas pipeline constraints in solving the optimization problem and evaluate the impacts of gas consumption in power plants on gas pipelines operating condition. This paper studies about operating of gas fired power plants in critical conditions when the demand of gas and electricity peak together. An integrated model of gas and electric model is used to consider the gas pipeline constraints in the economic dispatch problem of gas-fueled thermal generator units.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915