
 
Abstract—This paper presents established 3n enumeration 

procedure for mixed integer optimization problems for solving multi-
objective reliability and redundancy allocation problem subject to 
design constraints. The formulated problem is to find the optimum 
level of unit reliability and the number of units for each subsystem. A 
number of illustrative examples are provided and compared to 
indicate the application of the superiority of the proposed method. 

 
Keywords—Integer programming, mixed integer programming, 

multi-objective optimization, reliability redundancy allocation.  

I. INTRODUCTION 

HE design of a multistage series system requires 
maximizing system reliability (or minimization of 

unreliability) while at the same time minimizing system cost 
and in some instances weight and volume as well. Thus 
minimization of multiple objective functions became an 
important aspect of system reliability in the design of 
engineering systems. The optimal system design, in some 
situation, involves several conflicting objectives such as to 
minimize system cost and weight while simultaneously 
maximizing the system reliability. Thus multiple objective 
function is an important aspect of reliability design of 
engineering systems where the system designer either requires 
a single solution where all design constraints are satisfied or 
identifies a Pareto optimal set. Misra et al. [1], [2] present a 
method for solving multiple criteria reliability design 
problems through a direct search technique in combination 
with a min-max approach. Here the series-parallel allocation 
problem has been solved using a fuzzy programming 
formulation of the problem by imposing a threshold on 
reliability. Ravi et al. [3] apply the same fuzzy optimization 
approach and solve a problem of choosing optimal redundancy 
for a series-parallel system with no alternative component 
choices. Dhingra [4] and Rao and Dhingra [5] studied a 
reliability and redundancy allocation problem for a four-stage 
and a five-stage over-speed protection system, using crisp and 
fuzzy multi-objective optimization approaches, respectively. 
Taboada et al. [6], [7] proposed a Genetic Algorithm approach 
for multi-objective reliability design problems maximizing the 
reliability and minimizing the total cost of the system and 
proposed a pruning scheme to reduce set of solutions. Particle 
swarm introduced by Kennedy and Eberhart [8] is a 
population based heuristic fast converging and robust 
technique to solve single objective optimization design 
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problems which has been extended to solve multiple objective 
problems [9]-[12].  

In earlier attempt to solve allocation problem, the 
component reliability was kept fixed and the optimal 
redundancy of each stage was found for maximum system 
reliability [1]. The general optimization problem deals with 
the situation where both optimal component reliability and the 
optimal redundancy of each stage are computed to maximize 
system reliability and simultaneously minimize other 
resources such cost, weight and volume. This problem is 
formulated as a multi-objective non-linear mixed integer 
programming problem. Single objective optimization cannot 
compromise among the mutually conflicting objectives. A 
Pareto optimal set is a set of solution that is all non-dominated 
with respect to each other. In the process of moving from one 
Pareto solution to another, one encounters sacrificing one 
objective to achieve gain in other. Thus, Pareto optimal 
solution provides a set from which one can select a best 
compromised solution among all non-dominated solutions [6]. 
Pareto optimal solutions set are generally preferred for 
multiple objective optimization problems; because it provides 
system designer a choice between crucial parameters.  

Due to the non-convexity of the problems for the optimal 
reliability design, many optimization methods fail to attain 
solutions, and meta-heuristic algorithms have been proposed 
[1]-[12] including one proposed that utilizes two phases [13]-
[15]. The proposed method to solve multi-objective problems 
captures possible solutions and permits several members of 
the Pareto optimal set in a single run of the algorithm. A host 
of various meta‐heuristic and evolutionary algorithms used for 
finding solutions that are very near the global optimum of a 
complex optimization problem, is covered in [16]. 

II. RELIABILITY REDUNDANCY ALLOCATION MULTI-
OBJECTIVE OPTIMIZATION MODEL 

A reliability redundancy multi-objective problem can be 
formulated as a following the constrained mixed-integer 
programming problem: 

 
Minimize f(x) = [ f1(x), f2(x),………, fk(x)]   (1) 

 
Subject to the m inequality constraints: 

 

gj(x)   0 j =1,2,……,m    (2) 
 
and the p equality constraints 
 

hj (x) = 0  j =1,2,……,p < n  (3) 
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where x = [x1, x2,…….., xn] is a vector of decision variables 
defined in n-dimensional Euclidean space of variables En, f(x) 
= [ f1(x), f2(x),……fk(x)] is a vector defined in Euclidean space 
of objective functions Ek, fp(x), gj(x), hj (x) are linear and/or 
non-linear functions of variables x1, x2, …….., xn. The 
constraints (equality and inequality) define the feasible region 
and any point x in this region defines the feasible solution. 

The method adopted to solve the multi-objective 
optimization is to combine all objective functions into a single 
aggregate function. A simple form of such function is a linear 

sum of weights of the form:   
 

Minimize 

1
( )

k

i i
i

f x



   (4) 

 
where λi ≥ 0 are the weighting coefficients representing the 
relative importance of the k objective functions. It is usually 
assumed that: 
 

1
1

k
ii
 



   (5) 

 
A method for finding the optimum of a non-linear non-

convex mixed discrete-function with mixed discrete-
continuous constraints within the bounds of the real and 
discrete variables has been developed in [13], [14] for integer 
problems and in [15] for mixed-integer problems. This 
procedure has been used to find optimum of mixed objective 
function (4) with specified constraints along with restrictions 
imposed on the x i.e. xL ≤ x ≤ xH. It should be noted that 
satisfying the design vector x upper bound xH and lower 
bound xL constraints does not imply satisfying the functional 
constraints gj (x). The search for the local optimum is started 
during Phase I of the gradient decent along the function 
gradient [13]-[15] where the search for the minimum point is 
carried by moving along the function gradient in a step and 
increasing the size of step if the value of the function 
decreases and reducing if it increases. However, if any of the 
constraints is violated then a move in a direction orthogonal to 
the constraint boundary is invoked to return the search to the 
feasible region. However, when two or more constraints are 
violated simultaneously, the return direction is given by ℓ1n1+ 
ℓ2n2+…., where n1, n2,… are unit  normal to the violated 
constraints, and ℓ1, ℓ2,… are positive weighting factors which 
are proportional to the amounts by which the constraints are 
violated [13]. Now the search for the minimum again resumes 
in a direction that is a vector sum of the normalized gradient 
of the multi-objective function (4) and the constraints that had 
been violated [17]. The search for minimum in the feasible 
region now continues until convergence criteria established in 
[13] are met. The local minima found in the first phase, is now 
used in the second phase where the 3n vector combinations 
neighboring this local are examined [13]-[15] and the local 
minimum obtained is now used as a seed for new iterative 
cycle. This cyclic search continues until there is no further 
improvement in objective function value and the best possible 

optimum solution vector X* found is used to calculate value of 
individual objective functions. A search for set of Pareto 
vectors for multi-objective function is carried out during the 
second phase of the optimization run from the set of vectors 
provided by 3n enumeration where f(x) ≥ f(x*)  

III. RELIABILITY REDUNDANCY MULTI-OBJECTIVE 

ALLOCATION PROBLEMS SOLVED 

A number of integer and mixed-integer reliability 
redundancy problems have been solved using the algorithm 
described in Section II. These problems have been taken from 
[1], [2], [4] on reliability optimization techniques. These test 
problems are for system configuration composed of three/four 
stages in series that can be categorized into the following 
major groups  

Problem P1 [1] 

Maximize the reliability and minimize cost and weight of 
series-parallel systems subject to linear constraints [1]. 
Maximize: Rs(x) = 3

1
( )i i

i
R x


  where each ( )i iR x  = 

)1 (1 i
ixr   

Minimize: Cs = 4 1x  + 8 2x + 6 3x   

Minimize: Ws= 6 1x  + 6 2x + 10 3x  

Subject to: 
 

 g1( x ) = 50.0 – (4 1x  + 8 2x + 6 3x } ≥ 0 

 g2( x ) = 52.0 – (6 1x  + 6 2x + 10 3x } ≥ 0 

 g3( x ) = 65.0 – (10 1x  + 5 2x + 10 3x } ≥ 0 

 g4( x ) = 
3

1
( )i i

i
R x


  - 0.94 ≥ 0 

 

Component reliability: 1 2 3, , )( r rr  = (0.86, 0.91, 0.96) 

Results 

 Multi-objective optimal redundancy allocation X*= 
(3,2,1); Objective function values are: Rs (X

*) = 0.949611, 
Cs (X

*) = 34.0, Ws (X
*) = 40.0 units.  

 The Pareto optimal solution is (2, 2, 2); Objective 
function values are: Rs (X

*) = 0.970903, Cs (X
*) = 36.0, 

Ws (X
*) = 44.0 units.  

 Single objective optimal redundancy allocation X*= 
(3,2,2); Objective function values are: Rs (X

*) = 0.98759, 
Cs (X

*) = 40.0, Ws (X
*) = 50.0 units.  

The results shown in [1] for multi-objective problem is in 
fact for one obtained for maximization of single objective 
system reliability subject to four constraints shown in the 
problem description.  

Problem P2 [1] 

Maximize the reliability and minimize cost of series-parallel 
systems subject to non-linear constraints. This example 
describes system configuration [1] composed of three stages 
where the subsystem reliability of the first stage is selected out 
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of four possible candidates for component reliability. The 
reliability of subsystem of the second stage is increased by 
adding additional units in parallel and for third subsystem 

assumes 2-out-of- 3x : G configuration. 

Statement of the Problem 

Maximize: Rs(x) = 
3

1
( )i i

i
R x


  where  

 

1

0.88
0.92
0.98
0.99

( )iR x

 
 
 
 
 
  


, for 

ix =1,2,3,4 

2 2( )xR = 1 - (1 – 0.81) 2x  

3
3

2

3
3 3 (0.77) (1 0.77)( )

x

i

i x ix
i

R x


 
 
 
 


 

 

 
Minimize: Cs(x) = 4 exp{ 0.02/(1- 

1( )iR x } + 5
2x + 2

3x  

Subject to: 
 

g1(x) = 45.0 – [4 exp { 0.02/(1- 
1( )iR x } + 5

2x + 2
3x ] ≥ 0 

g2(x) = 65.0 – { 31 2 ( 1)/4/8 /4
2 33( 5( )xx xe x e x e     } ≥ 0 

g3(x) = 230- { 
2

32 ( 1)/4/4
3 1)8 6( xx

x e x e 
  } ≥ 0 

  g4( x ) = 
3

1
( )i i

i
R x


  - 0.90 ≥ 0 

 
Also the reliability of each subsystem is constrained to have 

a minimum reliability of 0.95, i.e. Rj(x) ≥ 0.95 for j=1, 2, 3. 
The above constraint establishes the lower limit on the number 
units on each subsystem as (3, 2, 4) 

Results 

 Multi-objective Optimal redundancy allocation X*= 
(3,2,4): Objective function values are: Rs (X

*) = 0.90658, 
Cs (X

*) = 28.8731. The inequality constraints values are: 
g1(x) = 28.8731, g2(x) = 42.9861, g3(x) = 64.4855   

 Single objective Optimal redundancy allocation X*= 
(3,3,6): Objective function values are: Rs (X

*) = 0.970234; 
The inequality constraints values are: Cs (X

*) = 37.8731, 
Ws (X

*) = 64.2577, Vs (X
*) = 155.5183.   

The result reported in [1] is the one obtained for 
maximization of single objective system reliability subject to 
four constraints shown in the problem description. 

Problem P3  

The three problems solved here deal with mixed-integer 
non-linear programming problems where the x= (x1, x2,…,xn, 
xn+1, …, x2n) is a vector of decision variables, first n variables 
are integers that are the redundancies of the n stages and next 
n elements are reliabilities of component of each subsystem 
(stage). Other authors have solved such problems [4] using 
goal programming, goal attainment method and random search 
technique based on min-max approach described in [1], [2] to 

which the results are compared here.  

Problem P3,1 [2]  

The system configuration considered here is the same as 
considered above for Problem P1 & P2 and multi-objective 
optimization problem is solved to locate the optimal values of 
component reliabilities and allocation for each of the three 
subsystems.  

Statement of the Problem  

Maximize Rs(x) = 
3

1
( )i i

i
R x


  where 

1( )iR x  = 0.88, 0.92, 0.98 

and 0.99 for ix = 1,2,3,4 i.e. reliability of the first subsystem 

depends upon of the number of redundant units comprising the 
subsystem. 
 

2 2( )xR = 1 - (1 -
2r ) 2x  

3 3

3
3

2

3
3 3 ( ) (1 )( )

x

i

i x ix
r r

i
R x



 
 
 
 


   

 
and minimize: Cs(x) = 4 exp{ 0.02/(1- 

1( )iR x } + c2 2x + c3 3x  

Subject to: 
 

g1(x) = 45.0 – [4 exp { 0.02/(1- 
1( )iR x } + c2 2x + c3 3x ] ≥ 0 

g2(x) = 65.0 –{
1 2 3

31 2 ( 1)/4/8 /4
2 3)( ( )xx xwe w x e w x e     } ≥ 0 

g3(x) = 230 - { 
2 2 3

32 ( 1)/4/4
3 1)( xx

v x e v x e 
  } ≥ 0 

g4( x ) = 
3

1
( )i i

i
R x


  - 0.90 ≥ 0 

 
also 0.45 ≤ ri ≤ 0.99 for I = 1, 2, 3 where g1, g2, g3 and g4 are 
cost, weight, volume and reliability constraints respectively 

and each of the coefficient ci, iw , iv  is of the form 

exp{ /(1 )}i i ir  . The values of 
i and 

i  for each of ci, iw , 
iv  

are listed in Table I.  
 

TABLE I 

VALUES OF i  AND 
i  FOR DIFFERENT CONSTRAINTS 

Stage  
 

Constraints 

1 

1          1  

2 

2           2  

3 

3          3  

1 
2 
3 

4.0      0.02 
0.16    0.22 
0.0      0.0 

4.5      0.002 
2.5      0.03 
4.0      0.14 

1.2      0.15 
2.5     0.21 
2.1     0.32 

Results 

Following result is the minimum of multi-objective function 
found assigning weight 

1 =0.50 and 
2 =0.50 to the reliability 

and cost function. 
 Optimal allocation (x,r) = (3, 2, 5, 0.98, 0.90239, 

0.69870); Optimal subsystem reliability = (0.98, 
0.990422, 0.968728); Optimal system reliability = 
0.94030; Optimal system cost = 20.508897. 
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 Optimal solution where the emphasis is on achieving 
maximizing reliability, the result is provided at the end of 
Phase2. Optimal allocation (x,r) = (3, 2, 6, 0.98, 0.90239, 
0.700705); Optimal subsystem reliability = (0.98, 
0.990472, 0.989184); Optimal system reliability = 
0.960164; Optimal system cost = 22.602661. 

Result found in [2] is inferior to one reported above for 
multi-objective problem and also inferior to single objective of 
maximization of system reliability and minimization of system 
cost separately as reported below. The optimal allocations 
individually for each of objective function are: 
 for Objective function 1 (i.e. maximizing system 

reliability) (3, 2, 6, 0.98, 0.902129, 0.7010), system 
reliability 0.960163 and system cost 22.611, weight 
60.983 and volume 162.201 

 for Objective function 2 (i.e. minimizing cost) (2, 2, 6, 
0.92, 0.900375, 0.69871), system cost 22.6542 and 
system reliability 0.900707, weight 60.2326 and volume 
159.7735 

The optimal allocation reported in [2] is inferior for first 
objective function (i.e. reliability) and inadmissible for second 
objective function (i.e. cost) as the fourth constraint g4( x ) is 
clearly violated. 

Problem P3,2 [2] 

The system consists of four subsystems in series with each 
subsystem consisting of identical units arranged in parallel. 
The problem is defined as: 
Maximize: 
 

4 4

1 1
(1 (1 ) )i

s i i
i i

xR R r
 

     , 

 

or Minimize Qs = 1 - sR and Minimize Cs = 
4

1
i i

i
c x


  

Subject to: 
 

g1(x) =
4

1
400i i

i
c x


 , 

 

where exp( / (1 )i i i irc    . The values of i  and 
ii  for each 

of the subsystems are provided in Table II. 
 

g2(x) = 
4

1
75.0i i

i
w x


  

g3(x) = 
4

1
80.0i i

i
v x


  

 

where iwand iv  are of the form 
i

i
ir
  and also, 

 

g4(x) = 
4

1
i

i
R


 - 0.90 ≥ 0 

 

i.e., the system reliability should be at least equal to 0.90 and 
further, each of the subsystem reliabilities i.e., 

(1 (1 ) )ix
ii rR   ≥ 0.95, i=1,…,4. Also, 0.40 ≤ ri ≤ 0.99 for i 

= 1,2,3,4 i.e., each of the component reliabilities in each 
subsystem is restricted to a value between 0.40 and 0.99. 

 
TABLE II 

VALUES OF i  AND 
i  FOR DIFFERENT CONSTRAINTS 

Stage 
 

Constraints 

1 

1        1  

2 

2       2  

3 

3      3  

4 

4    4  

1 
2 
3 

1.0      0.3 
5.0     2.0 
4.0      2.0 

3.5   0.55 
4.0   2.0 
8.0   2.0 

2.0  0.4 
8.0  2.0 
6.0  2.0 

5.0   0.65 
7.0   2.0 
10.0  2.0 

Results 

 Optimal allocation = (11, 0.50399 10, 0.50996, 10, 
0.51399 10, 0.49893); Optimal subsystem reliability = 
(0.999553, 0.999201, 0.999265, 0.999002); Optimal 
system reliability =  0.997025; Optimal system cost = 
356.168 units; Resources consumed = (356.168, 62.933, 
72.726). 

The optimal allocations reported in [2] are as follows: 
 Optimal allocation = (10, 0.573, 8, 0.587, 9, 0.547, 10, 

0.532); Optimal subsystem reliability = 0.99979, 0.99916, 
0.99920, 0.9995; Optimal system reliability = 0.99767; 
Optimal system cost = 370.94; Resource consumed = 
(370.95, 68.90, 79.79). 

The optimal allocations with respect maximization of first 
objective function (system reliability) are: 
 Optimal allocation = (12, 0.50644, 11, 0.51047, 11, 

0.5164, 11, 0.49683); Optimal subsystem reliability = 
0.99979, 0.99961, 0.99966, 0.99947; Optimal system 
reliability = 0.998543; Optimal system cost = 390.932 
units; Resources consumed = (390.932, 69.332, 79.9985). 

The optimal allocations with respect to minimization of 
second objective function (system cost) are: 
 Optimal allocation = (6, 0.5260, 6, 0.43596, 6, 0.5130, 6, 

0.4000); Optimal subsystem reliability = 0.98866, 
0.96780, 0.98666, 0.95334; Optimal system reliability = 
0.9000; Optimal system cost = 182.897 units; Resources 
consumed = (182.897, 32.2134, 34.837). 

There are no reported results in [2] for maximization of 
single objective system reliability and minimization of system 
cost to compare the above results. 

Problem P3,3 [4] 

This test problem deals with an example of a gas turbine 
where the speed is controlled by 4 control valves used to 
cutoff fuel supply. This control system is modeled as a 4-stage 
series system where all components have constant failure rate. 
The objective is to find optimal level of Ri and ni at each stage 
such that: 
i. f1 (system reliability) is maximized  
ii. f2(cost) is minimized 
iii. f3(weight) is minimized 

The multi-objective reliability apportionment problem is: 
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Find n and R that: 
Minimize [-f1, f2, f3]  
Subject to: gj (R, n) ≤ aj, j =1,….,m  

The design constraints are: 

1. 2
lim

1
,

N

i i
i

V v n V


   

2. 
lim

1
exp( / 4)i i

N

i
i

w WW n n


  

3. 

1
[1 (1 ) ]i

N
n

system i
i

R RR


    

4. 
1

( )[ exp( / 4)]
N

i i i
i

C R n n C


   

Additional Assumptions 

The cost –reliability relation is: 
 

 ( ) .[ / ln( )] i
i i iC R t R    

 
t is the operating time during which the component must not 

fail. Additional constraints, for all i include: 1≤ ni ≤ 10 and 
0.50 ≤ Ri ≤ 1 – 10-6  

The design data used for the example problem is shown in 
[4]. The optimal results obtained by solving three individual 
objective optimization problems are shown in Table III. 

 
TABLE III 

OPTIMUM SOLUTIONS FOR SINGLE OBJECTIVE OPTIMIZATIONS 
Objective Optimal soln proposed method Optimal soln reported in [4] CPU 

(sec) 
Max Rs (7, 0.7492, 3, 0.9421, 4, 

0.9257, 5, 0.8442): Rs = 
0.99962, C = 399.991, w = 

488.946, V = 165.0 

(6, 0.81604, 6, 0.80309, 3, 
0.98364, 5, 0.80373), Rs = 
0.99961, C = 399.936, w = 

495.652, V = 185.0 

 
10.156 

Min C (4, 0.50, 4, 0.50, 5, 0.52276, 3, 
0.50): Rs = 0.7500, C = 

20.13985, w = 314.548 V = 
141.0 

(4, 0.50, 4, 0.50, 5, 
0.5925,3, 0.50): Rs = 

0.7604, C = 20.7252, w = 
314.548, V = 141.0 

 
 4.187 

Min W (1, 0.97168, 1, 0.94673, 1, 
0.96887, 1, 0.92916): Rs = 

0.828154, C = 399.998, w = 
34.6687, V = 8.0 

(1, 0.96221, 1, 0.92315, 1, 
0.98787, 1, 0.92065): Rs = 
0.80786, C = 399.509, w = 

34.668, V = 8.0  

 
1.468 

 
TABLE IV 

COMPARISON OF OPTIMAL SOLUTIONS FOR MULTI-OBJECTIVE OPTIMIZATIONS 
Starting Vector Pareto-Optimum Soln 

Proposed 
Optimal Soln

Phase II Proposed Method 
Optimal Soln Reference [4] CPU Time 

(sec.) 
(8, 0.80, 9, 0.85, 8, 0.85, 4, 0.95) 

 
 
 
 
 

(3, 0.7965, 3, 0.8331, 3, 0.847 
0.8477, 2, 0.907), Rs = 0.974967, 
C = 156.732, W = 150.1021, V = 

62.0, F = -194.28 

(2, 0.80, 2, 0.76358, 2, 0.83648, 1, 
0.85018), Rs = 0.7500, C = 59.898, W = 

74.937, V = 26.0, F = -250.9635 
 

(2, 0.9412, 2, 0.9091, 2, 0.9408, 2,
0.9128), Rs = 0.97739, C = 287.19, 

W = 89.031, V = 32.0, F = 
-171.384* 

8.281 
 
 

(2,0.8,2,0.7635,2,0.8364,2, 0.85) 
Rs= 0.86223 

C=75.0 
W=89.031 
V=32.0, 

F=-241.365 
(10, 0.850, 8, 0.75, 7, 0.92, 5, 

0.85) 
(4, 0.8489, 3, 0.7489, 2, 0.919, 2, 

0.8489), Rs = 0.95492, C = 
110.1457, W = 152.8064, V = 

54.0, F = -208.7546 

(2, 0.8104, 2, 0.7389, 2, 0.8805, 1, 
0.8469), Rs = 0.7500, C = 60.083, W = 

74.937, V = 26.0, F = -250.9024 

(2, 0.8650, 3, 0.8181, 2, 0.8425, 3,
0.8064), RS = 0.94478, C = 

104.472, W = 128.727, V = 52.0, 
F = -218.570* 

0.484 

(7, 0.86, 9, 0.90, 6, 0.95, 5, 
0.855) 

(3, 0.849, 3, 0.8497, 3, 0.9274, 3 
0.8405), Rs = 0.98878, C = 

156.0065, W = 171.477, V = 72.0,
F = -187.47, 

(2, 0.8275, 1, 0.8649,1, 0.936, 2, 0.7867)
Rs = 0.7500, C = 79.48, W = 60.84, V = 

17.0, F = -249.152 
 

(3, 0.94327, 2, 0.89276, 2, 
0.95354, 3, 0.89132)*, Rs = 
0.98492, C = 312.831, W = 

128.727,V = 47.0, F = -149.824* 

3.578 

(2, 0.8492, 2, 0.8496, 2, 0.9273, 
2, 0.8404), Rs = 0.92591, C = 

111.105, W = 89.031, V = 32.0, F 
= -229.474 

*Function values computed using Pareto-Optimum solution vector obtained for each optimization method shown in [4]. 
 

The proposed method agrees with the results for single 
objective optimization shown in [4] and provides slightly 
better optimum with lower consumption of resources in few 
cases.  

The same algorithm is utilized to generate optimal solutions 
for multiple objective optimization problem and the results are 
compared with that generated by goal programming, goal 
attainment and fuzzy optimization [4], and shown in Table IV. 

The starting vectors were chosen where for each stage the 
number of components and component reliability [4] are 
chosen between specified maximum and minimum allowable 
for each optimization run and the scalar multipliers 0.34, 0.33, 
0.33 are used for the system reliability, cost and weight 

functions. A decision vector is said to be Pareto optimal, if it 
is not dominated by any other decision vectors. The set of all 
Pareto optimal decision vectors is called the admissible set of 
the problem. The local optimum obtained from 3n enumeration 
in second phase is used as a seed for a new iterative cycle. The 
optimums found in each cycle are used to find the non-
dominated vectors to form set of Pareto vectors. Other starting 
vectors can be used to generate additional Optimal Pareto 
vectors. A Pareto optimal vector (2, 0.80, 2, 0.7635, 2, 0.8364, 
2, 0.85) providing a system reliability of 0.86223 and 
minimum cost of 75.0, weight 89.031 and volume 32.0 is the 
most desirable choice for this problem that has not been 
reported in literature. Other Pareto optimum vector shown in 
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second column of Table IV is comparable to that reported in 
[4]. 

The goal programming formulation of multi-objective 
optimization using goal for each objective function obtained 
by minimizing individual objective functions shown in Table 
III as suggested in [4] were used but the results for optimal 
allocation remain unchanged from what is shown in Table IV.  

IV. CONCLUSION 

In this work an established method developed by the 
authors for solving integer and mixed-integer problems is 
utilized to solve multi-objective reliability allocation 
problems. The results for several test problems for integer and 
mixed integer problems have been compared and found to 
agree and in few instances superior to those reported in 
literature. The optimum result for multi-objective integer 
problem P1 reported is in fact for single objective reliability 
function. Once again for mixed allocation problem, reported 
result in [2] for optimum allocation, is for single objective 
system reliability. Our results for both problem P1 and P2 
presented are superior to those reported in [1], [2]. In case of 
problem P3 the global optimum shown is the minimum cost 
and weight function found and lower limit of system reliability 
is reached irrespective of starting vector used for the search of 
global optimum. This global optimal solution can be also 
referred as Pareto optimal solution. In general, however, there 
exist a number of solutions that can be generated as suggested 
here using 3n enumeration of the second phase of algorithm 
[13], [15] that user can use to select a compromise solution 
according to their preference. Further work will entail 
developing set of Pareto optimal solutions from which the 
system designer can select a superior compromise between 
mutually conflicting objective functions.  
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