Search results for: prestressed structures
1313 Evaluation of Applicability of High Strength Stirrup for Prestressed Concrete Members
Authors: J.-Y. Lee, H.-S. Lim, S.-E. Kim
Abstract:
Recently, the use of high-strength materials is increasing as the construction of large structures and high-rise structures increases. This paper presents an analysis of the shear behavior of prestressed concrete members with various types of materials by simulating a finite element (FE) analysis. The analytical results indicated that the shear strength and shear failure mode were strongly influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. Though the yield strength of shear reinforcement increased the shear strength of prestressed concrete members, there was a limit to the increase in strength because of the change of shear failure modes. According to the results of FE analysis on various parameters, the maximum yield strength of the steel stirrup that can be applied to prestressed concrete members was about 860 MPa.
Keywords: PSC members, shear failure mode, high strength stirrups, high strength concrete, shear behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13921312 Decreasing of Displacements of Prestressed Cable Truss
Authors: V. Goremikins, K. Rocens, D. Serdjuks
Abstract:
Suspended cable structures are most preferable for large spans covering due to rational use of structural materials, but the problem of suspended cable structures is initial shape change under the action of non-symmetrical load. The problem can be solved by increasing of relation of dead weight and imposed load, but this methods cause increasing of materials consumption.Prestressed cable truss usage is another way how the problem of shape change under the action of non-symmetrical load can be fixed. The better results can be achieved if we replace top chord with cable truss with cross web. Rational structure of the cable truss for prestressed cable truss top chord was developed using optimization realized in FEM program ANSYS 12 environment. Single cable and cable truss model work was discovered.Analytical and model testing results indicate, that usage of cable truss with the cross web as a top chord of prestressed cable truss instead of single cable allows to reduce total displacements by 13-16% in the case of non-symmetrical load. In case of uniformly distributed load single cable is preferable.
Keywords: Cable trusses, Non-symmetrical load, Cable truss models, Vertical displacements
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18891311 Wave Interaction with Defects in Pressurized Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry
Abstract:
A wave finite element (WFE) and finite element (FE) based computational method is presented by which the dispersion properties as well as the wave interaction coefficients for one-dimensional structural system can be predicted. The structural system is discretized as a system comprising a number of waveguides connected by a coupling joint. Uniform nodes are ensured at the interfaces of the coupling element with each waveguide. Then, equilibrium and continuity conditions are enforced at the interfaces. Wave propagation properties of each waveguide are calculated using the WFE method and the coupling element is modelled using the FE method. The scattering of waves through the coupling element, on which damage is modelled, is determined by coupling the FE and WFE models. Furthermore, the central aim is to evaluate the effect of pressurization on the wave dispersion and scattering characteristics of the prestressed structural system compared to that which is not prestressed. Numerical case studies are exhibited for two waveguides coupled through a coupling joint.Keywords: Finite element, prestressed structures, wave finite element, wave propagation properties, wave scattering coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9491310 Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures
Authors: Tomoko Fukuyama, Osamu Senbu
Abstract:
Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.
Keywords: Prestressed concrete, electric charge, impedance, phase shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7211309 Tensile Test of Corroded Strand and Maintenance of Corroded Prestressed Concrete Girders
Authors: Jeon Chi-Ho, Lee Jae-Bin, Shim Chang-Su
Abstract:
National bridge inventory in Korea shows that the number of old prestressed concrete (PSC) bridgeover 30 years of service life is rapidly increasing. Recently tendon corrosion is one of the most critical issues in the maintenance of PSC bridges. In this paper, mechanical properties of corroded strands, which were removed from old bridges, were evaluated using tensile test. In the result, the equations to express the mechanical behavior of corroded strand were derived and compared to existing equation. For the decision of tendon replacement, it is necessary to evaluate the effect of corrosion level on strength and ductility of the structure. Considerations on analysis of PSC girders were introduced, and decision making on tendon replacement was also proposed.
Keywords: Prestressed concrete bridge, prestressing steel, corrosion, strength, ductility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13091308 The Importance of Bridge Health Monitoring
Authors: Punya Chupanit, Chayatan Phromsorn
Abstract:
In the past, there were many bridge-s collapses due to lack of bridge structural capacity information. Most of concrete bridge health was relied on information from visual inspection, which sometime was inadequate. This study was conducted in order to investigate relationship between bridge structural condition and bridge visual condition. This study was a part of a big project conducted at Department of Highways of Thailand. In this study, 31 bridges including slab-type bridges, plank-girder bridges, prestressed box-beam bridges, prestressed I-girder bridges and prestressed multibeam bridges were selected for visual inspection and load test. It was found a positive correlation between bridge appearance and bridge-s load carrying capacity. However, statistical characteristic revealed low correlation between them.Keywords: Bridge, Visual Inspection, Load Test, Condition Rating, Rating Factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20541307 Topology Optimization of Cable Truss Web for Prestressed Suspension Bridge
Authors: Vadims Goremikins, Karlis Rocens, Dmitrijs Serdjuks
Abstract:
A suspension bridge is the most suitable type of structure for a long-span bridge due to rational use of structural materials. Increased deformability, which is conditioned by appearance of the elastic and kinematic displacements, is the major disadvantage of suspension bridges. The problem of increased kinematic displacements under the action of non-symmetrical load can be solved by prestressing. The prestressed suspension bridge with the span of 200 m was considered as an object of investigations. The cable truss with the cross web was considered as the main load carrying structure of the prestressed suspension bridge. The considered cable truss was optimized by 47 variable factors using Genetic algorithm and FEM program ANSYS. It was stated, that the maximum total displacements are reduced up to 29.9% by using of the cable truss with the rational characteristics instead of the single cable in the case of the worst situated load.
Keywords: Decreasing displacements, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26971306 Development of a Sliding-tearing Mode Fracture Mechanical Tool for Laminated Composite Materials
Authors: Andras Szekrenyes
Abstract:
This work presents the mixed-mode II/III prestressed split-cantilever beam specimen for the fracture testing of composite materials. In accordance with the concept of prestressed composite beams one of the two fracture modes is provided by the prestressed state of the specimen, and the other one is increased up to fracture initiation by using a testing machine. The novel beam-like specimen is able to provide any combination of the mode-II and mode-III energy release rates. A simple closed-form solution is developed using beam theory as a data reduction scheme and for the calculation of the energy release rates in the new configuration. The applicability and the limitations of the novel fracture mechanical test are demonstrated using unidirectional glass/polyester composite specimens. If only crack propagation onset is involved then the mixed-mode beam specimen can be used to obtain the fracture criterion of transparent composite materials in the GII - GIII plane in a relatively simple way.
Keywords: Composite, fracture mechanics, toughness testing, mixed-mode II/III fracture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19391305 Prestressed Concrete Girder Bridges Using Large 0.7 Inch Strands
Authors: Amin Akhnoukh
Abstract:
The National Bridge Inventory (NBI) includes more than 600,000 bridges within the United States of America. Prestressed concrete girder bridges represent one of the most widely used bridge systems. The majority of these girder bridges were constructed using 0.5 and 0.6 inch diameter strands. The main impediments to using larger strand diameters are: 1) lack of prestress bed capacities, 2) lack of structural knowledge regarding the transfer and development length of larger strands, and 3) the possibility of developing wider end zone cracks upon strand release. This paper presents a study about using 0.7 inch strands in girder fabrication. Transfer and development length were evaluated, and girders were fabricated using 0.7 inch strands at different spacings. Results showed that 0.7 inch strands can be used at 2.0 inch spacing without violating the AASHTO LRFD Specifications, while attaining superior performance in shear and flexure.
Keywords: 0.7 inch strands, prestress, I-girders, bridges
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30531304 Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing
Authors: R. I. Liban, N. Tayşi
Abstract:
This paper deals with a nonlinear finite element analysis to examine the behavior up to failure of cantilever composite steel-concrete beams which are prestressed externally. 'Pre-' means stressing the high strength external tendons in the steel beam section before the concrete slab is added. The composite beam contains a concrete slab which is connected together with steel I-beam by means of perfect shear connectors between the concrete slab and the steel beam which is subjected to static loading. A finite element analysis will be done to study the effects of external prestressed tendons on the composite steel-concrete beams by locating the tendons in different locations (profiles). ANSYS version 12.1 computer program is being used to analyze the represented three-dimensional model of the cantilever composite beam. This model gives all these outputs, mainly load-displacement behavior of the cantilever end and in the middle span of the simple support part.
Keywords: Composite steel-concrete beams, external prestressing, finite element analysis, ANSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14151303 Experimental Investigation on Flexural Behaviors in Framed Structure of PST Method
Authors: S. Hong, H. Kim, D. Cho, S. Park
Abstract:
Existing underground pipe jacking methods use a reinforcing rod in a steel tube to obtain structural stiffness. However, some problems such as inconvenience of works and expensive materials resulted from limited working space and reinforcing works are existed. To resolve these problems, a new pipe jacking method, namely PST (Prestressed Segment Tunnel) method, was developed which used joint to connect the steel segment and form erection structure. For evaluating the flexural capacity of the PST method structure, a experimental test was conducted. The parameters considered in the test were span-to-depth ratio of segment, diameter of steel tube at the corner, prestressing force, and welding of joint. The flexural behaviours with the effect of load capacity in serviceability state according to different parameters were examined.. The frame with long segments could increase flexural stiffness and the specimen with large diameter of concave corner showed excellent resistance ability to the negative moment. In addition, welding of joints increased the flexural capacity.Keywords: PST method, Pipe jacking method, Flexural behavior, Prestressed concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15631302 Optimal Controllers with Actuator Saturation for Nonlinear Structures
Authors: M. Mohebbi, K. Shakeri
Abstract:
Since the actuator capacity is limited, in the real application of active control systems under sever earthquakes it is conceivable that the actuators saturate, hence the actuator saturation should be considered as a constraint in design of optimal controllers. In this paper optimal design of active controllers for nonlinear structures by considering actuator saturation, has been studied. The proposed method for designing optimal controllers is based on defining an optimization problem which the objective has been to minimize the maximum displacement of structure when a limited capacity for actuator has been used. To this end a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of prestressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used. To achieve the best results, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been optimized by the Distributed Genetic Algorithm (DGA). Results show the effectiveness of the proposed method in considering actuator saturation. Also based on the numerical simulations it can be concluded that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers which consider the actuator saturation.Keywords: Active control, Actuator Saturation, Distributedgeneticalgorithms, Nonlinear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16031301 Behavior Factor of Flat Double-Layer Space Structures
Authors: Behnam Shirkhanghah, Vahid Shahbaznejhad-Fard, Houshyar Eimani-Kalesar, Babak Pahlevan
Abstract:
Flat double-layer grid is from category of space structures that are formed from two flat layers connected together with diagonal members. Increased stiffness and better seismic resistance in relation to other space structures are advantages of flat double layer space structures. The objective of this study is assessment and calculation of Behavior factor of flat double layer space structures. With regarding that these structures are used widely but Behavior factor used to design these structures against seismic force is not determined and exact, the necessity of study is obvious. This study is theoretical. In this study we used structures with span length of 16m and 20 m. All connections are pivotal. ANSYS software is used to non-linear analysis of structures.
Keywords: Behavior factor, Double-layer, Intensified resistance, Non-linear analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20391300 Experimental Inspection of Damage and Performance Evaluation after Repair and Strengthening of Jiamusi Highway Prestressed Concrete Bridge in China
Authors: Ali Fadhil Naser, Wang Zonglin
Abstract:
The main objectives of this study are to inspect and identify any damage of jaimusi highway prestressed concrete bridge after repair and strengthening of damaged structural members and to evaluate the performance of the bridge structural members by adopting static load test. Inspection program after repair and strengthening includes identifying and evaluating the structural members of bridge such as T-shape cantilever structure, hanging beams, corbels, external tendons, anchor beams, sticking steel plate, and piers. The results of inspection show that the overall state of the bridge structural member after repair and strengthening is good. The results of rebound test of concrete strength show that the average strength of concrete is 46.31Mpa. Whereas, the average value of concrete strength of anchor beam is 49.82Mpa. According to the results of static load test, the experimental values are less than theoretical values of internal forces, deflection, and strain, indicating that the stiffness of the experimental structure, overall deformation and integrity satisfy the designed standard and the working performance is good, and the undertaking capacity has a certain surplus. There is not visible change in the length and width of cracks and there are not new cracks under experimental load.Keywords: Jiamusi Bridge, Damage inspection, deflection, strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141299 Site Inspection and Evaluation Behavior of Qing Shang Concrete Bridge
Authors: Haleem K. Hussain, Liu Gui Wei, Zhang Lian Zhen, Yongxue Li
Abstract:
It is necessary to evaluate the bridges conditions and strengthen bridges or parts of them. The reinforcement necessary due to some reasons can be summarized as: First, a changing in use of bridge could produce internal forces in a part of structural which exceed the existing cross-sectional capacity. Second, bridges may also need reinforcement because damage due to external factors which reduced the cross-sectional resistance to external loads. One of other factors could listed here its misdesign in some details, like safety of bridge or part of its.This article identify the design demands of Qing Shan bridge located in is in Heilongjiang Province He gang - Nen Jiang Road 303 provincial highway, Wudalianchi area, China, is an important bridge in the urban areas. The investigation program was include the observation and evaluate the damage in T- section concrete beams , prestressed concrete box girder bridges section in additional evaluate the whole state of bridge includes the pier , abutments , bridge decks, wings , bearing and capping beam, joints, ........etc. The test results show that the bridges in general structural condition are good. T beam span No 10 were observed, crack extended upward along the ribbed T beam, and continue to the T beam flange. Crack width varying between 0.1mm to 0.4mm, the maximum about 0.4mm. The bridge needs to be improved flexural bending strength especially at for T beam section.Keywords: Field investigation, prestressed concrete box girder, maintenance, Qing Shan Bridge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18711298 A Preliminary Study on Effects of Community Structures on Epidemic Spreading and Detection in Complex Networks
Authors: Yi Yu, Gaoxi Xiao
Abstract:
Community structures widely exist in almost all real-life networks. Extensive researches have been carried out on detecting community structures in complex networks. However, many aspects of how community structures may affect the dynamics and properties of complex networks still remain unclear. In this work, we examine the impacts of community structures on the epidemic spreading and detection in complex networks. Extensive simulation results show that community structures may not help decrease the infection size at steady state, yet they could indeed help slow down the infection spreading. Also, networks with strong community structures may expect to have a smaller average infection size when equipped with a number of sparsely deployed monitors.
Keywords: Complex network, epidemic spreading, infection size, infection monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15991297 Multiscale Structures and Their Evolution in a Screen Cylinder Wake
Authors: Azlin M. Azmi, T. Zhou, A. Rinoshika, L. Cheng
Abstract:
The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been educed to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multiresolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequencyf0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d> 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses atx/d =10 before being taken over by the large-scale structures (f0) further downstream.
Keywords: Turbulent structure, screen cylinder, vortex, wavelet multiresolution analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15491296 Structural Rehabilitation, Retrofitting and Strengthening of Reinforced Concrete Structures
Authors: Manish Kumar
Abstract:
Reinforced cement concrete is getting extensively used for construction of different type of structures for the last one century. During this period, we have constructed many structures like buildings, bridges, industrial structures, pavement, water tanks etc. using this construction material. These structures have been created with huge investment of resources. It is essential to maintain those structures in functional condition. Since deterioration in RCC Structures is a common and natural phenomenon it is required to have a detailed plan, methodology for structural repair and rehabilitation shall be in place for dealing such issues. It is important to know exact reason of distress, type of distress and correct method of repair concrete structures. The different methods of repair are described in paper according to distress category which can be refereed for repair. Major finding of the study is that to protect our structure we need to have maintenance frequency and correct material to be chosen for repair. Also workmanship during repair needs to be taken utmost care for quality repair.Keywords: Deterioration, functional condition, reinforced cement concrete, resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46951295 Advantages of Large Strands in Precast/Prestressed Concrete Highway Application
Authors: Amin Akhnoukh
Abstract:
The objective of this research is to investigate the advantages of using large-diameter 0.7 inch prestressing strands in pretention applications. The advantages of large-diameter strands are mainly beneficial in the heavy construction applications. Bridges and tunnels are subjected to a higher daily traffic with an exponential increase in trucks ultimate weight, which raise the demand for higher structural capacity of bridges and tunnels. In this research, precast prestressed I-girders were considered as a case study. Flexure capacities of girders fabricated using 0.7 inch strands and different concrete strengths were calculated and compared to capacities of 0.6 inch strands girders fabricated using equivalent concrete strength. The effect of bridge deck concrete strength on composite deck-girder section capacity was investigated due to its possible effect on final section capacity. Finally, a comparison was made to compare the bridge cross-section of girders designed using regular 0.6 inch strands and the large-diameter 0.7 inch. The research findings showed that structural advantages of 0.7 inch strands allow for using fewer bridge girders, reduced material quantity, and light-weight members. The structural advantages of 0.7 inch strands are maximized when high strength concrete (HSC) are used in girder fabrication, and concrete of minimum 5ksi compressive strength is used in pouring bridge decks. The use of 0.7 inch strands in bridge industry can partially contribute to the improvement of bridge conditions, minimize construction cost, and reduce the construction duration of the project.
Keywords: 0.7 Inch Strands, I-Girders, Pretension, Flexure Capacity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27411294 Inheritance Growth: a Biology Inspired Method to Build Structures in P2P
Authors: Panchalee Sukjit, Herwig Unger
Abstract:
IT infrastructures are becoming more and more difficult. Therefore, in the first industrial IT systems, the P2P paradigm has replaced the traditional client server and methods of self-organization are gaining more and more importance. From the past it is known that especially regular structures like grids may significantly improve the system behavior and performance. This contribution introduces a new algorithm based on a biologic analogue, which may provide the growth of several regular structures on top of anarchic grown P2P- or social network structures.Keywords: P2P, Pattern generation, Grid, Social network, Inheritance, Reproduction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14641293 Balance of Rural and Urban Structures
Authors: Ehrenstorfer Barbara, Peherstorfer Tanja, Nový Jan
Abstract:
Urbanization and regionalization are two different approaches when it comes to economical structures and development, infrastructure and mobility, quality of life and living, education, social cohesion and many other topics. At first glance, the structures associated with urbanization and regionalization seems to be contradicting. This paper discusses possibilities of transfer and cooperation between rural and urban structures. An empirical investigation contributed to reveal scenarios of supposable forms of exchange and cooperation of remote rural areas and big cities.Keywords: Learning Regions, Quality of Life and Living, Regional and Rural Development, Social Innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17381292 Maximum Common Substructure Extraction in RNA Secondary Structures Using Clique Detection Approach
Authors: Shih-Yi Chao
Abstract:
The similarity comparison of RNA secondary structures is important in studying the functions of RNAs. In recent years, most existing tools represent the secondary structures by tree-based presentation and calculate the similarity by tree alignment distance. Different to previous approaches, we propose a new method based on maximum clique detection algorithm to extract the maximum common structural elements in compared RNA secondary structures. A new graph-based similarity measurement and maximum common subgraph detection procedures for comparing purely RNA secondary structures is introduced. Given two RNA secondary structures, the proposed algorithm consists of a process to determine the score of the structural similarity, followed by comparing vertices labelling, the labelled edges and the exact degree of each vertex. The proposed algorithm also consists of a process to extract the common structural elements between compared secondary structures based on a proposed maximum clique detection of the problem. This graph-based model also can work with NC-IUB code to perform the pattern-based searching. Therefore, it can be used to identify functional RNA motifs from database or to extract common substructures between complex RNA secondary structures. We have proved the performance of this proposed algorithm by experimental results. It provides a new idea of comparing RNA secondary structures. This tool is helpful to those who are interested in structural bioinformatics.Keywords: Clique detection, labeled vertices, RNA secondary structures, subgraph, similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14571291 The HDH Model for the Development of Creative Structural Thinking and Its Applications to Other Systems
Authors: Mosseri Avraham
Abstract:
Teaching structures and structural design in architectural studies is considered a difficult mission due to complex reasons and circumstances. This article proposes a new conceptual model (HDH) for teaching structures and structural design in architectural studies. Because of its systems-thinking orientation it is also relevant and applicable to other fields and systems. The HDH model was developed in order to encourage the integration of science and art, especially in relation to structures, in architectural studies.
Keywords: Structural Thinking, Conceptual Design, Teaching Structures, Systems Thinking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14171290 Making Data Structures and Algorithms more Understandable by Programming Sudoku the Human Way
Authors: Roelien Goede
Abstract:
Data Structures and Algorithms is a module in most Computer Science or Information Technology curricula. It is one of the modules most students identify as being difficult. This paper demonstrates how programming a solution for Sudoku can make abstract concepts more concrete. The paper relates concepts of a typical Data Structures and Algorithms module to a step by step solution for Sudoku in a human type as opposed to a computer oriented solution.Keywords: Data Structures, Algorithms, Sudoku, ObjectOriented Programming, Programming Teaching, Education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30971289 Seismic Vulnerability Mitigation of Non-Engineered Buildings
Authors: Muhammad Tariq A. Chaudhary
Abstract:
The tremendous loss of life that resulted in the aftermath of recent earthquakes in developing countries is mostly due to the collapse of non-engineered and semi-engineered building structures. Such structures are used as houses, schools, primary healthcare centers and government offices. These building are classified structurally into two categories viz. non-engineered and semi-engineered. Non-engineered structures include: adobe, unreinforced masonry (URM) and wood buildings. Semi-engineered buildings are mostly low-rise (up to 3 story) light concrete frame structures or masonry bearing walls with reinforced concrete slab. This paper presents an overview of the typical damage observed in non-engineered structures and their most likely causes in the past earthquakes with specific emphasis on the performance of such structures in the 2005 Kashmir earthquake. It is demonstrated that seismic performance of these structures can be improved from life-safety viewpoint by adopting simple low-cost modifications to the existing construction practices. Incorporation of some of these practices in the reconstruction efforts after the 2005 Kashmir earthquake are examined in the last section for mitigating seismic risk hazard.
Keywords: Kashmir earthquake, non-engineered buildings, seismic hazard, structural details, structural strengthening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29431288 Cost-Effective Design of Space Structures Joints: A Review
Authors: Mohammed I. Ali, Feng Fan, Peter N. Khakina, Ma H.H
Abstract:
In construction of any structure, the aesthetic and utility values should be considered in such a way as to make the structure cost-effective. Most structures are composed of elements and joints which are very critical in any skeletal space structure because they majorly determine the performance of the structure. In early times, most space structures were constructed using rigid joints which had the advantage of better performing structures as compared to pin-jointed structures but with the disadvantage of requiring all the construction work to be done on site. The discovery of semi-rigid joints now enables connections to be prefabricated and quickly assembled on site while maintaining good performance. In this paper, cost-effective is discussed basing on strength of connectors at the joints, buckling of joints and overall structure, and the effect of initial geometrical imperfections. Several existing joints are reviewed by classifying them into categories and discussing where they are most suited and how they perform structurally. Also, finite element modeling using ABAQUS is done to determine the buckling behavior. It is observed that some joints are more economical than others. The rise to span ratio and imperfections are also found to affect the buckling of the structures. Based on these, general principles that guide the design of cost-effective joints and structures are discussed.
Keywords: Buckling, Connectors, Joint stiffness, Eccentricity, Second moment of area, Semi-rigid joints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47761287 Development of State Model Theory for External Exclusive NOR Type LFSR Structures
Authors: Afaq Ahmad
Abstract:
Using state space technique and GF(2) theory, a simulation model for external exclusive NOR type LFSR structures is developed. Through this tool a systematic procedure is devised for computing pseudo-random binary sequences from such structures.Keywords: LFSR, external exclusive NOR type, recursivebinary sequence, initial state - next state, state transition matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15971286 Detection ofTensile Forces in Cable-Stayed Structures Using the Advanced Hybrid Micro-Genetic Algorithm
Authors: Sang-Youl Lee
Abstract:
This study deals with an advanced numerical techniques to detect tensile forces in cable-stayed structures. The proposed method allows us not only to avoid the trap of minimum at initial searching stage but also to find their final solutions in better numerical efficiency. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the cable model modeled using the finite element method. The results indicate that the proposed method is computationally efficient in characterizing the tensile force variation for cable-stayed structures.
Keywords: Tensile force detection, cable-stayed structures, hybrid system identification (h-SI), dynamic response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21301285 CSOLAP (Continuous Spatial On-Line Analytical Processing)
Authors: Taher Omran Ahmed, Abdullatif Mihdi Buras
Abstract:
Decision support systems are usually based on multidimensional structures which use the concept of hypercube. Dimensions are the axes on which facts are analyzed and form a space where a fact is located by a set of coordinates at the intersections of members of dimensions. Conventional multidimensional structures deal with discrete facts linked to discrete dimensions. However, when dealing with natural continuous phenomena the discrete representation is not adequate. There is a need to integrate spatiotemporal continuity within multidimensional structures to enable analysis and exploration of continuous field data. Research issues that lead to the integration of spatiotemporal continuity in multidimensional structures are numerous. In this paper, we discuss research issues related to the integration of continuity in multidimensional structures, present briefly a multidimensional model for continuous field data. We also define new aggregation operations. The model and the associated operations and measures are validated by a prototype.Keywords: Continuous Data, Data warehousing, DecisionSupport, SOLAP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15951284 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method
Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić
Abstract:
This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.Keywords: Finite-discrete element method, dry stone masonry structures, static load, dynamic load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617