

Abstract—Data Structures and Algorithms is a module in most

Computer Science or Information Technology curricula. It is one of
the modules most students identify as being difficult. This paper
demonstrates how programming a solution for Sudoku can make
abstract concepts more concrete. The paper relates concepts of a
typical Data Structures and Algorithms module to a step by step
solution for Sudoku in a human type as opposed to a computer
oriented solution.

Keywords—Data Structures, Algorithms, Sudoku, Object

Oriented Programming, Programming Teaching, Education.

I. INTRODUCTION
ATA Structures and Algorithms is a crucial part of any
curriculum in Computer Science or Information

Technology. However, often students indicate this module as
more difficult than their other modules. The content of a
typical module in Data Structures includes: Object Oriented
Programming (OOP) concepts such as class design,
polymorphism, abstract data types and more; data structures
such as arrays, linked lists, queues and more; algorithm design
such as sorting and merging algorithms; and algorithm
analysis such as asymptotic analysis.

The aim of this paper is to demonstrate how these different
concepts of data structures can be mastered by the students
while writing a program to solve the traditional game of
Sudoku.

This work is suitable for students who are in their second
year of programming and are skilled in basic programming. It
has been used as assignment in a 15 academic week semester
together with parts of the textbook [3]. Addition short
programming assignments could be given to ensure mastering
of specific topics in the textbook.

The paper starts with a short description of the game of
Sudoku in section II. Section III is the main part of the paper
that demonstrates how Sudoku can be used to teach data
structures. Conclusions and future work is presented in
sections IV and V respectively.

The argument presented by this paper is that programming
students should write programs to solve Sudoku using
“human” methods to improve their algorithm development
skills and their understanding of data structures.

R. Goede is with the North-West University, Vanderbijlpark, 1900,

Republic of South Africa (phone: +27-16-9103276; fax: +27-86-5839764; e-
mail: roelien.goede@nwu.ac.za).

II. SUDOKU
Sudoku is a numbers based puzzle where the player must

complete a grid of numbers using the numbers 1 to 9. The
history of the development of the puzzle may be found at [1].
There is a simple rule: the numbers 1 to 9 may only appear
once in each row, column and indicated 3x3 block on the grid.
Fig. 1 represents a Sudoku puzzle and its solution from [1].
For reference purposes Fig. 2 presents row, column and block
numbers.

Fig. 1 A Sudoku puzzle and its solution [1]

Fig. 2 A Sudoku grid with identification numbers

When using computers, the puzzle can be solved using

different methods but the most obvious solution is the brute
force method where available numbers are allocated to cells
until a dead-end is reached where no more allocations can be
made, it then moves back and makes a different allocation
(full description in [2]).

Humans solve Sudoku in a much more fun and intuitive
way. People set up rules or strategies for themselves to find
the values of a specific cell. These strategies can be very
complex to explain, but easy to do. One such example of a
strategy is to view the blocks in groups. Blocks 0, 3 and 6 can
be viewed as a block-column. Any specific number – say 8,

Making Data Structures and Algorithms more
Understandable by Programming Sudoku the

Human Way
Roelien Goede

D

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:4, 2013

464International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

4,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

32
6.

pd
f

(from Fig. 1) must then be present somewhere in column 0
and somewhere in column 1 and somewhere in column 2, but
only once in each block. When this strategy is applied, one
notices that there is already an 8 in columns 0 and 2. There
must be one in column 1 and it must be in block 6, since
blocks 0 and 3 already contains an 8. The 8 must be either in
row 7 or 8 in block 6. Since there is an 8 in block 7, row 8, the
8 should be in row 7 of block 6. This is an example of how
complicated we can make the strategies. This strategy can be
extremely difficult to program.

Exactly the same can be achieved with a much simpler
strategy: Each column should have one instance of each
number. When column 2 is checked, it is clear that there may
not be an 8 in block 0 or block 3 as they already contain 8’s.
Row 8 cannot be an 8 so there is only one cell in the column
where 8 can be possible and that is row 7. This second rule is
much simpler than the first strategy but the first might be
quicker to check for some people.

This paper aims to demonstrate how programming concepts
can be used to programme these human methods in order to
help students develop their data structures and algorithm
skills.

III. USING SUDOKU TO TEACH DATA STRUCTURES AND
ALGORITHMS

The aim of this section is to present detail on how the
human way of solving Sudoku can be used to facilitate
mastering of OOP concepts and algorithm design. In learning
OOP, the student focuses so much on theory that many
students fail to develop the skills to develop good algorithms.

When programming Sudoku using human methods as
opposed to computer methods such as brute force, students
develop the skill to identify how their brain works in general
terms and how to “teach” a computer to perform the same
activity in the form of a program.

The program based on a “human” solution can then be
analysed by students using formal analysis methods and
students can compare it with more “computer oriented”
solutions in order to better understand why we use different
strategies when solving some problems as humans than we use
when programming computers.

The following sections present the detail (Java
implementation) of the proposed Sudoku assignment. The
discussion starts with an explanation of the initial data
structures used by the solution.

A. The Cell Class
The first data structure to be used in this solution is a class.

Each cell in the Sudoku grid becomes an object of the cell
class. This demonstrates the relationship between classes and
its related objects to the students. The overall strategy is to use
a nine position array in each cell to indicate possible values for
that cell. Initially all 9 digits 1-9 are possible, but as
allocations are made some of these values are eliminated. The
Java class can be given initially as:

public class SudokuCell
{
intcell_row, cell_col, cell_value;
int [] possible_values;
}

A constructor is then used to assign 0 to the first 3 variables
and the numbers 1 to 9 to the array. Accessor and mutator
methods are also added to this class.

B. The Puzzle Grid
In a separate class, which can be understood as the puzzle

solving class, a two dimensional (9x9) array is used containing
the objects of the cell class. In Java terms this can be
initialised as:

public void clearBoard() {
for (int row = 0; row<9; row++) {
for (int col = 0; col <9; col ++)
board[row][col]= new SudokuCell();
 }
 }
}

The data structure board [][] is used as a class variable
within scope of the entire class.

The total solution strategy is kept separate from the single
cell class as these are two separate entities.

C. The Basic Strategy: Assignment 1
The basic strategy of this solution is to update the possible

values array in each cell and to make an allocation when only
one value is possible for that cell. After any allocation was
made, the possible values of all the affected cells are updated
again. An allocation of a value in a cell affects the possible
values of all the cells in the same row, column and block as
the allocated cell. The cell class contains a mutator to set a
specific value in the possible values array equal to zero.

This process of updating the possible values of the cells
after an allocation is a good exercise in nested loop
programming for the students. The given grid (left side of Fig.
1) is seen as specific allocations to be made. Fig. 3 contains a
depiction of the cell in row1, column 1 after the initial
allocation was made.

possible_values index 0 1 2 3 4 5 6 7 8

possible_values values 0 2 0 4 0 0 7 0 0

cell_row 0
cell_col 0
cell_value 0

Fig. 3 Variable values for cell (1,1)

The fact that Java starts array indices at 0 rather than 1
complicates the implementation, but is a good learning
experience for the students.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:4, 2013

465International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

4,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

32
6.

pd
f

The main strategy is to write a method that counts the
possible values in the array that are not equal to 0 (this method
is in the cell class). From the solution class the method is
called for each cell in a nested loop with an exit condition if
one is found. If a cell is found with only one possible value
the allocation is made and the affected cells need to be
updated.

The implementation up to this point can be a good first
assignment for the students. They can be provided with a
number of puzzles that are solvable by this strategy – these are
easy puzzles but the student feels a true sense of achievement
by creating this program. This method has been used in ten
successive semester courses and almost all the students in the
Data Structures module (who completed introductory
programming) are successful in this first assignment.

Students quickly discover that they need to add some sort of
variable value presentation to their code in order to find
logical errors. They add a method to the cell class that displays
all the values for the variables on screen. At this point most
students develop a more graphical display for their solution
process.

Up to this point the following concepts of data structures
and algorithms have been applied:

• Class and object design
• Reusability of classes
• One and two dimensional arrays
• Variable tracking / debugging
It is possible to handle some of the arrays with linked lists –

One could give the exercise to replace the possible_values
array with a linked list. Students then develop linked list
access methods that traverse the linked list. This leads to a
good understanding of the difference between direct and
sequential access to elements! It has to be said that one should
provide students with additional assignments to illustrate the
advantages of linked lists over arrays.

At this point in the semester the Java solution should be
explained to the students who did not succeed in this first
assignment. Each assignment is evaluated in terms of code
but the student also needs to explain the functioning of the
code to ensure honesty and fairness

D. Assignment 2
After completing assignment 1 (setting up the data

structures and updating the possible values for the initial
setup) the students have an understanding of the classes
involved. Many students struggle to develop the loop that
manages the solution. A loop is needed as each allocation
influence the state of the puzzle. The loop should terminate if
no changes were made to the puzzle or it is solved.

After assignment 1 most students realise that their solution
can only solve the most elementary Sudoku puzzles and they
start thinking how it can be improved. This is where the
success of this assignment is most evident. Students are seen
working on printed puzzles, they are trying to figure out what
they do to solve the problem. From this point some of the
students work without any guidance. Students are given time

to develop their own ideas, but are also given fixed
assignments in order to practice certain theoretical concepts.

Assignment 2 involves traversing the rows, columns and
blocks and search for numbers what can only be allocated to
one cell in a specific block, row or column. This strategy was
explained in section II of this paper. From a programming
strategy, it involves nested loops where each row, column and
block is traversed. The possible_values array of each cell in a
row (column or block) is checked for each number from 1 to 9
to find numbers that only appear once in the row (column or
block). Most students do this for one number (1-9) at a time,
but one may use and array and do it for all 9 numbers at once.

The most challenging part is to decide how to traverse a
specific block. There are two main strategies. One may
compute the applicable cell indices or one could create a table
with all the indices of the cells in a specific block. The
advantage of the second strategy is twofold: First, a three
dimensional array is used to store the indices (a 2D table for
each block’s row and column values). Students have a fear of
higher dimensional arrays since they struggle to visualise them
and are presented here with an example of such an array. The
second advantage is that the code to traverse the block is very
similar to that of traversing the rows or columns since it is not
cluttered with index computations. This illustrates the
advantage of good consistent programming style to the
students.

Students need to be supplied with puzzles that are solvable
with this strategy alone, and once again the feeling of
achievement is noticeable when they succeed.

E. Assignments 3
When one solves Sudoku there is a special rule necessary to

eliminate possible values which form the basis for Assignment
3. It is as follows: if all the possible values of a specific
number within a block appear in the same row or column, that
number cannot appear anywhere else in that row or column
(i.e. in other blocks). In order to simplify the implementation
of this rule an additional field is added to the cell class (given
in Section III (A)) for the block number of the specific cell.
At this point most of the students improved their skills in such
way that they are motivated to take control of the entire
solution. Students who still need guidance receive assignments
4.

F. Assignment 4
Most people who solve Sudoku puzzles regularly, use the

“pairs” rule to make the final allocations. The “pairs” rule is
about finding pairs of cells that has the same two values as
only possible values. The pairs have to be in the same row,
column or block. If such a pair exists, the two numbers
making up the pair cannot be anywhere else in the specific
row, column or block.

If a student is able to develop an algorithm for this rule, it
can be said that that student mastered the skill of developing
algorithms that are using multidimensional arrays, classes and
objects. At this point most Sudoku puzzles can be solved by
the program.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:4, 2013

466International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

4,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

32
6.

pd
f

G. Assignment 5
However, some most challenging puzzles needs the solver

to guess a value (choose between 2 alternatives) and see if it
leads a legal solution. Students need to develop a “test
solution” method. It is at this point where students start to
enquire about the feasibility of brute force solutions since the
algorithm required to test an allocation is a basic building
block of the brute force method.

H. Assignment 6: Polymorphism
After assignment 5 the Sudoku solver is complete, now the

students could be asked to rework the entire solution to
function with alphabetical characters instead of digits. At this
point they have mastered the theory of abstract methods and
classes. The textbook of Bruno Preiss [3] is recommended
reading in this regard. This assignment develops insight in re-
usability of code for different data types by using
polymorphism.

I. Assignment 7: Runtime Analysis
At the end of the semester, students are used to analyse the

running time of algorithms as it is used frequently in their
textbook [3]. In assignment 7 they have to analyse the running
time of their solution compared to a brute force solution for
Sudoku. At his point they develop a full understanding that
some problems are solved in a total different manner when
using a computer than what we as humans use. Most students
in computer science also take a module covering linear
programming, and they realises that instead of all the
programming they did, one can view Sudoku as an Integer
Programming problem [4]. Solving the puzzle is not the main
focus of the assignment; developing of algorithm for
something one is used to doing by hand is.

IV. CONCLUSION
In the first meeting session of the semester, students are

surprised when a Sudoku puzzle is handed out to them for
completion then and there. They are excited about the prospect
of having to program the solution themselves. The problem of
Sudoku is complex enough that students soon realise that it
might be more difficult than they expected and that the
complexity is on a much higher level than the assignments of
their first year of programming.

Most first year programming assignments focus on laying a
good foundation in terms of programming language constructs
but are too simple to develop algorithm design skills. Students
often feel after their first year that they have a lot of
programming “tools” but they have not yet used it to create a
solution to a problem. Quite often, they do not know where to
start when confronted with a more challenging problem.

This paper presents an assignment for students in data
structures and algorithms that use the many of OOP concepts
and data structures to solve Sudoku puzzles. The assignment is
to program a solution that is intuitive to the human mind and
not the typical brute force approach associated with
computers. In doing so, the students gain experience in
analysing their cognitive processes and relaying these to

computers in the form of algorithm development. The
assignment is divided in smaller assignments. The final
assignment is used to demonstrate to the students that some
problems like Sudoku can be addressed on methods suitable
for computers that are different from human cognitive
problem solving.

V. FUTURE RESEARCH
Informal feedback received of students later in their lives

has always been positive: they relate how this assignment gave
them confidence. As future research a formal study will be
done under alumni to better understand the role of this
assignment in forming them as programmers.

REFERENCES
[1] Anonymous, Sudoku, Wikipedia, accessed on 31/01/2013 at

http://en.wikipedia.org/wiki/Sudoku.
[2] K. van der Bok, M. Taouil, P. Afratis & I. Sourdis, "The TU Delft

Sudoku solver on FPGA," Field-Programmable Technology, 2009.
FPT2009. International Conference on , vol., no., pp.526-529, 9-11 Dec.

[3] B.R. Preiss, Data structures and algorithms with object-oriented design
patterns in Java. Wiley: New York, NY, 2000.

[4] Bartlett AC and Langville AN. An Integer Programming Model for the
Sudoku accessed on 31/01/2013 at http://langvillea.people.cofc.edu/
Sudoku/sudoku2.pdf?

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:4, 2013

467International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

4,
 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

32
6.

pd
f

