Decreasing of Displacements of Prestressed Cable Truss
Authors: V. Goremikins, K. Rocens, D. Serdjuks
Abstract:
Suspended cable structures are most preferable for large spans covering due to rational use of structural materials, but the problem of suspended cable structures is initial shape change under the action of non-symmetrical load. The problem can be solved by increasing of relation of dead weight and imposed load, but this methods cause increasing of materials consumption.Prestressed cable truss usage is another way how the problem of shape change under the action of non-symmetrical load can be fixed. The better results can be achieved if we replace top chord with cable truss with cross web. Rational structure of the cable truss for prestressed cable truss top chord was developed using optimization realized in FEM program ANSYS 12 environment. Single cable and cable truss model work was discovered.Analytical and model testing results indicate, that usage of cable truss with the cross web as a top chord of prestressed cable truss instead of single cable allows to reduce total displacements by 13-16% in the case of non-symmetrical load. In case of uniformly distributed load single cable is preferable.
Keywords: Cable trusses, Non-symmetrical load, Cable truss models, Vertical displacements
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1076238
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897References:
[1] European Committee for Standardization, Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges, Brussels, 2004
[2] European Committee for Standardization, Eurocode 3 : Design of steel structures - Part 1.11: Design of structures with tensile components, Brussels, 2003.
[3] Feyrer K., Wire Ropes. Berlin: Springer-Verlag Berlin Heidelberg, 2007.
[4] Fletcher R., Practical methods of optimization, 2nd edition, London: John Willey &Sons Inc., 2000.
[5] Gogol M., "Shaping of Effective Steel Structures," in Scientific proceedings of Rzeszow Technical University, Rzeszow: Rzeszow Technical University, 2009.
[Nr. 264], pp. 43-56.
[6] Goremikins V., Rocens K., Serdjuks D., "Rational Structure of Cable Truss," in World Academy of Science, Engineering and Technology. Special Journal Issues, Issue 0076: 2011, pp. 571-578.
[7] Goremikins V., Serdjuks D., "Rational Structure of Trussed Beam," in Proc. The 10th International Conference "Modern Building Materials, Structures and Techniques", Vilnius: Vilnius Gediminas Technical University, 2010, pp. 613-618.
[8] Goremikins V., Rocens K., Serdjuks D., "Rational Structure of Composite Trussed Beam," in Proc. The 16th International Conference "Mechanics of composite materials, Riga: Institute of Polymer Mechanics, 2010, p. 75.
[9] Goremikins V., Rocens K., Serdjuks D., "Evaluation of Rational Parameters of Trussed Beam," in Scientific Journal of RTU. 2. series., Construction Science, 11. vol., 2010, pp. 21-25.
[10] Goremikins V., Rocens K., Serdjuks D. "Rational Large Span Structure of Composite Pultrusion Trussed Beam," in Scientific Journal of RTU. 2. series., Construction Science., 11. vol., 2010, pp. 26-31.
[11] Hambly E.C. Bridge Deck Behaviour. Second edition, New York: E & FN Spon, 1998.
[12] Montgomery D.C. Design and analysis of experiments, 5th edition, New York: John Willey &Sons Inc., 2001.
[13] Serdjuks, D.; Rocens, K., "Decrease the Displacements of a Composite Saddle-Shaped Cable Roof," Mech. Compos. Materials, Vol. 40, No5., 2004.
[14] Shen, Z.Y.; Li, G.Q.; Zhang, Q.L., "Advances in steel structures," in Proc. Fourth International Conference, Shanghai, China, 2005.
[15] Strasky J. Stress Ribbon and Cable Supported Pedestrian Bridge, London: Thomas Telford Publishing, 2005.
[16] Tibert G. Numerical Analyses of Cable Roof Structures. Stockholm: KTH, TS-Hogskoletryckeriet, 1999.
[17] Wai-Fah Chen, Eric M. Lui, Handbook of structural engineering, New York, 2005.
[18] Walther R., Houriet B., Isler W., Moia P., Klein J.F. Cable Stayed Bridges. Second edition. London: Thomas Telford, 1999.
[19] Барабаш М, Лазнюк М., Мартынова, М., Пресняков, Н., Современные технологии расчета и проектирования металлических и деревянных конструкций. (Modern Designing and Calculation Techniques of Steel and Timber Structures), Москва: Издательство Асоции строительных вузов, 2008.
[20] Басов К., ANSYS:Справочник пользователя. (ANSYS: User Manual), Москва: ДМК Пресс, 2005.
[21] Бахтин С., Овчинников И., Инамов Р., Висячие и вантовые мосты (Suspension and Cable Bridges), Саратов: Сарат. гос. техн. ун-т, 1999.
[22] Беленя Е., Стальные конструкции: Спецкурс (Steel Structures: Special Course), Москва: Стройиздат, 1991.
[23] Ведеников Г., Металлические конструкции: Общий курс(Steel Structures: General Course), Москва: Стройиздат, 1998.
[24] Городецкий А., Евзоров И., 2005. Компьютерные модели конструкций (Structures computer models), Киев: Факт, 2005.
[25] Ермолов В., Инженерные конструкции (Engineering Structures), Москва: Высшая школа, 1991.
[26] Кирсанов М. Висячие системы повышенной жесткости (Suspension Structures with Increased Stiffness), Москва: Стройиздат, 1983.
[27] Михайлов В., Предварительно напряженные комбинированные и вантовые конструкции (Prestressed Combined and Cable Structures), Москва: ACB, 2002.
[28] Петропавловский А., Вантовые мосты (Cable Bridges), Москва: Транспорт, 1985.
[29] Смирнов В., Висячие мосты больших пролетов (Large Span Suspension Bridges), Москва: Высшая школа, 1970.
[30] Трущев А., Пространственные металлические конструкции (Spatious Steel Structures), Москва: Стройиздат. 1983.
[31] http://en.wikipedia.org/wiki/Bubble_sort