Development of a Sliding-tearing Mode Fracture Mechanical Tool for Laminated Composite Materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Development of a Sliding-tearing Mode Fracture Mechanical Tool for Laminated Composite Materials

Authors: Andras Szekrenyes

Abstract:

This work presents the mixed-mode II/III prestressed split-cantilever beam specimen for the fracture testing of composite materials. In accordance with the concept of prestressed composite beams one of the two fracture modes is provided by the prestressed state of the specimen, and the other one is increased up to fracture initiation by using a testing machine. The novel beam-like specimen is able to provide any combination of the mode-II and mode-III energy release rates. A simple closed-form solution is developed using beam theory as a data reduction scheme and for the calculation of the energy release rates in the new configuration. The applicability and the limitations of the novel fracture mechanical test are demonstrated using unidirectional glass/polyester composite specimens. If only crack propagation onset is involved then the mixed-mode beam specimen can be used to obtain the fracture criterion of transparent composite materials in the GII - GIII plane in a relatively simple way.

Keywords: Composite, fracture mechanics, toughness testing, mixed-mode II/III fracture.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1331707

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943

References:


[1] T. L. Anderson, Fracture Mechanics - Fundamentals and Applications, third edition ed. Boca Raton, London, New York, Singapore: CRC Press, Taylor & Francis Group, 2005.
[2] A. J. Brunner and P. Fl¨ueler, "Prospects in fracture mechanics of "engineering" laminates," Engineering Fracture Mechanics, vol. 72, pp. 899-908, 2005.
[3] A. J. Brunner, B. R. K. Blackman, and P. Davies, "A status report on delamination resistance testing of polymer-matrix," Engineering Fracture Mechanics, vol. 75, pp. 2779-2794, 2008.
[4] ASTM D6671 / D6671M - 06 Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional, 2006.
[5] Determination of the mixed-mode I/II delamination resistance of unidirectional fibre-reinforced polymer laminates using the asymmetric double cantilever beam specimen (ADCB), version 00-05-03 ed., European Structural Integrity Society (ESIS), Polymers and Composites Task Group, 2000.
[6] G. Becht and J. W. G. Jr., "Design and analysis of the crack rail shear specimen for mode III interlaminar fracture," Composites Science and Technology, vol. 31, pp. 143-157, 1988.
[7] S. L. Donaldson, "Mode III intelaminar fracture characterization of composite materials," Composites Science and Technology, vol. 32, pp. 225-249, 1988.
[8] S. M. Lee, "An edge crack torsion method for mode III delamination fracture testing," Journal of Composite Technology & Research, vol. 15, no. 3, pp. 193-201, 1993.
[9] W. C. Liao and C. T. Sun, "The determination of mode III fracture toughness in thick composite laminates," Composites Science and Technology, vol. 56, pp. 489-499, 1996.
[10] H. Suemasu, "An experimental method to measure the mode-III interlaminar fracture toughness of composite materials," Composites Science and Technology, vol. 59, pp. 1015-1021, 1999.
[11] J. G. Ratcliffe, "Characterization of the edge crack torsion (ECT) test for mode III fracture toughness measurement of laminated composites," NASA, Technical Memorandum 213269, 2004.
[12] D. Pennas, W. J. Cantwell, and P. Compston, "The influence of strain rate on the mode III interlaminar fracture of composite materials," Journal of Composite Materials, vol. 41, pp. 2395-2614, 2007.
[13] A. B. de Morais, A. B. Pereira, M. F. S. F. de Moura, and A. G. Magalh╦ÿaes, "Mode III interlaminar fracture of carbon/epoxy laminates using the edge crack torsion (ECT) test," Composites Science and Technology, vol. 69, pp. 670-676, 2009.
[14] P. Robinson and Q. D. Song, "The development of an improved mode III delamination test for composites," Composites Science and Technology, vol. 52, pp. 217-233, 1994.
[15] D. Cicci, F. Sharif, and M. T. Kortschot, "Data reduction for the split cantilever beam mode III delamination test," in Proceedings, ACCM 10, Whistler, British Columbia, Canada, 14-18 August 1995, pp. 1-8.
[16] F. Sharif, M. T. Kortschot, and R. H. Martin, "Mode III delamination using a split cantilever beam," in Composite Materials: Fatigue and Fracture - Fifth Volume, R. H. Martin, Ed., vol. ASTM STP 1230. Philadelphia: ASTM, 1995, pp. 85-99.
[17] K. Trakas and M. T. Kortschot, "The relationship between critical strain energy release rate and fracture mode in multidirectional carbonfiber/ epoxy laminates," in Composite Materials: Fatigue and Fracture - Sixth Volume, A. Armanios, Ed., vol. ASTM STP 1285. ASTM, 1997, pp. 283-304.
[18] V. Rizov, Y. Shindo, K. H. K, and F. Narita, "Mode III interlaminar fracture behaviour of glass fiber reinforced polymer woven laminates at 293 to 4 k," Applied Composite Materials, vol. 13, pp. 287-304, 2006.
[19] M. Farshad and P. Fl¨ueler , "Investigation of mode III fracture toughness using an anti-clastic plate bending method," Engineering Fracture Mechanics, vol. 60, pp. 5-6, 1998.
[20] H. Yoshihara, "Examination of the 4-ENF test for measuring the mode III R-curve of wood," Engineering Fracture Mechanics, vol. 73, pp. 42-63, 2006.
[21] A. B. de Morais and A. B. Pereira, "Mode III interlaminar fracture of carbon/epoxy laminates using a four-point bending plate test," Composites Part A - Applied Science and Manufacturing, vol. 40, no. 11, pp. 1741-1746, 2009.
[22] A. Szekr'enyes, "Improved analysis of the modified split-cantilever beam for mode-III fracture," International Journal of Mechanical Sciences, vol. 51, pp. 682-693, 2009.
[23] A. B. Pereira, A. B. de Morais, and M. F. S. F. de Moura, "Design and analysis of a new six-point edge crack torsion (6ECT) specimen for mode III interlaminar fracture characterisation," Composites Part A - Applied Science and Manufacturing, vol. 42, no. 2, pp. 131-139, 2011.
[24] A. Szekr'enyes, "Delamination fracture analysis in the GII-GIII plane using prestressed transparent composite beams," International Journal of Solids and Structures, vol. 44, pp. 3359-3378, 2007.
[25] A. B. Pereira and A. B. de Morais, "Mixed mode I+III interlaminar fracture of carbon/epoxy laminates," Composites Part A - Applied Science and Manufacturing, vol. 40, no. 4, pp. 518-523, 2009.
[26] A. B. de Morais and A. B. Pereira, "Mixed mode II+III interlaminar fracture of carbon/epoxy laminates," Composites Part A - Applied Science and Manufacturing, vol. 68, no. 9, pp. 2022-2027, 2008.
[27] A. Szekr'enyes, "Interlaminar fracture analysis in the GI-GIII plane using prestressed transparent composite beams," Composites Part A - Applied Science and Manufacturing, vol. 40, no. 10, pp. 1621-1631, 2009.
[28] H. Suemasu, A. Kondo, K. Gozu, and Y. Aoki, "Novel test method for mixed mode II and III interlaminar fracture toughness," Advanced Composite Materials, vol. 19, pp. 349-361, 2010.
[29] R. M. Marat-Mendes and M. M. Freitas, "Failure criteria for mixed mode delamination in glass fibre epoxy composites," Composite Structures, vol. 92, no. 9, pp. 2292-2298, 2010, fifteenth International Conference on Composite Structures.
[30] A. Szekr'enyes, "Prestressed fracture specimen for delamination testing of composites," International Journal of Fracture, vol. 139, pp. 213-237, 2006.
[31] M. Kenane and S. Benmedakhene, "Fracture and fatigue study of unidirectional glass/epoxy laminate under different mode of loading," Fatigue and Fracture of Engineering Materials & Structures, vol. 33, no. 5, pp. 284-293, 2010.
[32] A. Szekr'enyes, "Improved analysis of unidirectional composite delamination specimens," Mechanics of Materials, vol. 39, pp. 953-974, 2007.
[33] A. Szekr'enyes, "Prestressed composite specimen for mixed-mode I/II cracking in laminated materials," Journal of Reinforced Plastics and Composites, vol. 29, pp. 3309-3321, 2010.
[34] N. K. Naik, K. S. Reddy, S. Meduri, N. B. Raju, P. D. Prasad, S. N. M. Azad, P. A. Ogde, and B. C. K. Reddy, "Interlaminar fracture characterization for plain weave fabric composites," Journal of Materials Science, vol. 37, pp. 2983-2987, 2002.
[35] S. F. Hwang and C. L. Hu, "Tearing mode interlaminar fracture toughness of composite materials," Polymer Composites, vol. 22, pp. 57-64, 2001.
[36] N. Blanco, E. K. Gamstedt, J. Costa, and D. Trias, "Analysis of the mixed-mode end load split delamination test," Composite Structures, vol. 76, pp. 14-20, 2006.
[37] H. Yoshihara and A. Satoh, "Shear and crack tip deformation correction for the double cantilever beam and three-point end-notched flexure specimens for mode i and mode ii fracture toughness measurement of wood," Engineering Fracture Mechanics, vol. 76, pp. 335-346, 2009.
[38] J. R. Reeder, "An evaluation of mixed-mode delamination failure criteria," NASA, Technical Memorandum 104210, 1992.
[39] F. Garvan, The Maple Book. Boca Raton, London, New York, Washington D.C.: Chapman & Hall/CRC, 2002.