Search results for: molecular imprinted polymer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 674

Search results for: molecular imprinted polymer

434 Differentiation between Common Tick Species Using Molecular Biology Techniques in Saudi Arabia

Authors: Kholoud A. Al-Shammery , Badr El-Sabah A. Fetoh, Ahmed M. Alshammari

Abstract:

Protein and Esterase electrophoresis were used to genetically identify two Saudi tick species. Engorged females of the camel tick Hyalomma dromedarii (Koch) (Acari: Ixodidae) and the cattle tick Boophilus annulatus (Say) (Acari: Ixodidae) ticks collected from infested camels and cattle in the animals resting house at Hail region in KSA were used. The results showed that there are a variation in both of protein and esterase activity levels and a high polymorphism within and between the genera and species of Hyalomma and Boophilus . In conclusion, the protein and esterase electrophoretic analysis used in the present study could successfully distinguish among tick species, commonly found in Saudi Arabia.

Keywords: Molecular biology, The camel tick Hyalomma dromedarii, The cattle tick Boophilus annulatus , Ticks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879
433 Simulation of Lid Cavity Flow in Rectangular, Half-Circular and Beer Bucket Shapes using Quasi-Molecular Modeling

Authors: S. Kulsri, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

We developed a new method based on quasimolecular modeling to simulate the cavity flow in three cavity shapes: rectangular, half-circular and bucket beer in cgs units. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a cavity flow was simulated, the instantaneous velocity vector fields were obtained by using an inverse distance weighted interpolation method. In all three cavity shapes, fluid motion was rotated counter-clockwise. The velocity vector fields of the three cavity shapes showed a primary vortex located near the upstream corners at time t ~ 0.500 s, t ~ 0.450 s and t ~ 0.350 s, respectively. The configurational kinetic energy of the cavities increased as time increased until the kinetic energy reached a maximum at time t ~ 0.02 s and, then, the kinetic energy decreased as time increased. The rectangular cavity system showed the lowest kinetic energy, while the half-circular cavity system showed the highest kinetic energy. The kinetic energy of rectangular, beer bucket and half-circular cavities fluctuated about stable average values 35.62 x 103, 38.04 x 103 and 40.80 x 103 ergs/particle, respectively. This indicated that the half-circular shapes were the most suitable shape for a shrimp pond because the water in shrimp pond flows best when we compared with rectangular and beer bucket shape.

Keywords: Quasi-molecular modelling, particle modelling, lid driven cavity flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
432 Molecular Dynamics and Circular Dichroism Studies on Aurein 1.2 and Retro Analog

Authors: Safyeh Soufian, Hoosein Naderi-Manesh, Abdoali Alizadeh, Mohammad Nabi Sarbolouki

Abstract:

Aurein 1.2 is a 13-residue amphipathic peptide with antibacterial and anticancer activity. Aurein1.2 and its retro analog were synthesized to study the activity of the peptides in relation to their structure. The antibacterial test result showed the retro-analog is inactive. The secondary structural analysis by CD spectra indicated that both of the peptides at TFE/Water adopt alpha-helical conformation. MD simulation was performed on aurein 1.2 and retro-analog in water and TFE in order to analyse the factors that are involved in the activity difference between retro and the native peptide. The simulation results are discussed and validated in the light of experimental data from the CD experiment. Both of the peptides showed a relatively similar pattern for their hydrophobicity, hydrophilicity, solvent accessible surfaces, and solvent accessible hydrophobic surfaces. However, they showed different in directions of dipole moment of peptides. Also, Our results further indicate that the reversion of the amino acid sequence affects flexibility .The data also showed that factors causing structural rigidity may decrease the activity. Consequently, our finding suggests that in the case of sequence-reversed peptide strategy, one has to pay attention to the role of amino acid sequence order in making flexibility and role of dipole moment direction in peptide activity. KeywordsAntimicrobial peptides, retro, molecular dynamic, circular dichroism.

Keywords: Antimicrobial peptides, retro, molecular dynamic, circular dichroism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
431 Isolation and Molecular Identification of Two Fungal Strains Capable of Degrading Hydrocarbon Contaminants on Saudi Arabian Environment

Authors: Amr A. El Hanafy, Yasir Anwar, Saleh A. Mohamed, Saleh Mohamed Saleh Al-Garni, Jamal S. M. Sabir, Osama A. H. Abu Zinadah, Mohamed Morsi Ahmed

Abstract:

In the vicinity of red sea about 15 fungi species were isolated from oil contaminated sites. On the basis of aptitude to degrade the crude oil and DCPIP assay, two fungal isolates were selected amongst 15 oil degrading strains. Analysis of ITS-1, ITS-2 and amplicon pyrosequencing studies of fungal diversity revealed that these strains belong to Penicillium and Aspergillus species. Two strains that proved to be the most efficient in degrading crude oil was Aspergillus niger (54%) and Penicillium commune (48%) Subsequent to two weeks of cultivation in BHS medium the degradation rate were recorded by using spectrophotometer and GC-MS. Hence, it is cleared that these fungal strains has capability of degradation and can be utilize for cleaning the Saudi Arabian environment.

Keywords: Fungal strains, hydrocarbon contaminants, molecular identification, biodegradation, GC-MS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
430 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: Arc spray, coating, composite, erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3317
429 Formulation and in vitro Evaluation of Ondansetron Hydrochloride Matrix Transdermal Systems Using Ethyl Cellulose/Polyvinyl Pyrrolidone Polymer Blends

Authors: Rajan Rajabalaya, Li-Qun Tor, Sheba David

Abstract:

Transdermal delivery of ondansetron hydrochloride (OdHCl) can prevent the problems encountered with oral ondansetron. In previously conducted studies, effect of amount of polyvinyl pyrrolidone, permeation enhancer and casting solvent on the physicochemical properties on OdHCl were investigated. It is feasible to develop ondansetron transdermal patch by using ethyl cellulose and polyvinyl pyrrolidone with dibutyl pthalate as plasticizer, however, the desired flux is not achieved. The primary aim of this study is to use dimethyl succinate (DMS) and propylene glycol that are not incorporated in previous studies to determine their effect on the physicochemical properties of an OdHCl transdermal patch using ethyl cellulose and polyvinyl pyrrolidone. This study also investigates the effect of permeation enhancer (eugenol and phosphatidylcholine) on the release of OdHCl. The results showed that propylene glycol is a more suitable plasticizer compared to DMS in the fabrication of OdHCl transdermal patch using ethyl cellulose and polyvinyl pyrrolidone as polymers. Propylene glycol containing patch has optimum drug content, thickness, moisture content and water absorption, tensile strength, and a better release profile than DMS. Eugenol and phosphatidylcholine can increase release of OdHCl from the patches. From the physicochemical result and permeation profile, a combination of 350mg of ethyl cellulose, 150mg polyvinyl pyrrolidone, 3% of total polymer weight of eugenol, and 40% of total polymer weight of propylene glycol is the most suitable formulation to develop an OdHCl patch. OdHCl release did not increase with increasing the percentage of plasticiser. DMS 4, PG 4, DMS 9, PG 9, DMS 14, and PG 14 gave better release profiles where using 300mg: 0mg, 300mg: 100mg, and 350mg: 150mg of EC: PVP. Thus, 40% of PG or DMS appeared to be the optimum amount of plasticiser when the above combination where EC: PVP was used. It was concluded from the study that a patch formulation containing 350mg EC, 150mg PVP, 40% PG and 3% eugenol is the best transdermal matrix patch compositions for the uniform and continuous release/permeation of OdHCl over an extended period. This patch design can be used for further pharmacokinetic and pharmacodynamic studies in suitable animal models.

Keywords: Ondansetron hydrochloride, dimethyl succinate, eugenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
428 Molecular Dynamics Simulation of Lubricant Adsorption and Thermal Depletion Instability

Authors: Bei Li, Qiu B. Chen, Chee H. Wong

Abstract:

In this work, we incorporated a quartic bond potential into a coarse-grained bead-spring model to study lubricant adsorption on a solid surface as well as depletion instability. The surface tension density and the number density profiles were examined to verify the solid-liquid and liquid-vapor interfaces during heat treatment. It was found that both the liquid-vapor interfacial thickness and the solid-vapor separation increase with the temperatureT* when T*is below the phase transition temperature Tc *. At high temperatures (T*>Tc *), the solid-vapor separation decreases gradually as the temperature increases. In addition, we evaluated the lubricant weight and bond loss profiles at different temperatures. It was observed that the lubricant desorption is favored over decomposition and is the main cause of the lubricant failure at the head disk interface in our simulations.

Keywords: Depletion instability, Lubricant film, Thermal adsorption, Molecular dynamics (MD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
427 Influence of Active Packaging on the Quality of Pumpkin - Rowanberry Marmalade Candies

Authors: Solvita Kampuse, Elga Berna, Sandra Muizniece-Brasava, Lija Dukalska, Irisa Murniece, Martins Sabovics, Zanda Kruma, Karina Ruse, Svetlana Sarvi, Kaspars Kampuss

Abstract:

Experiments with pumpkin-rowanberry marmalade candies were carried out at the Faculty of Food Technology of the Latvia University of Agriculture. The objective of this investigation was to evaluate the quality changes of pumpkin-rowanberry marmalade candies packed in different packaging materials during the storage of 15 weeks, and to find the most suitable packaging material for prolongation of low sugar marmalade candies shelf-life. An active packaging in combination with modified atmosphere (MAP, CO2 100%) was examined and compared with traditional packaging in air ambiance. Polymer Multibarrier 60 and paper bags were used. Influence of iron based oxygen absorber in sachets of 500 cc obtained from Mitsubishi Gas Chemical Europe Ageless® on the marmalade candies’ quality was tested during shelf life. Samples of 80±5 g were packaged in polymer pouches (110 mm x 110 mm), hermetically sealed by MULTIVAC C300 vacuum chamber machine, and stored in a room temperature +21±0.5 °C. The physiochemical properties –moisture content, hardness, aw, pH, changes of atmosphere content (CO2 and O2), ascorbic acid, total carotenoids, total phenols in headspace of packs, and microbial conditions were analysed before packaging and in the 1st, 3rd , 5th, 8th, 11th and 15th weeks of storage.

Keywords: Active packaging, marmalade candies, shelf life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2726
426 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation

Authors: M. Dehestani, M. Ghasemi-Kooch

Abstract:

In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.

Keywords: Dynamic simulation, single walled carbon nanotube, chlorophyll, adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
425 Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer

Authors: Mannal Tariq

Abstract:

Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.

Keywords: CFRP, deep beams, openings in deep beams, strut and tie model, shear behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
424 Adsorption of H2 and CO on Iron-based Catalysts for Fischer-Tropsch Synthesis

Authors: Weixin Qian, Haitao Zhang, Hongfang Ma, Yongdi Liu, Weiyong Ying, Dingye Fang

Abstract:

The adsorption properties of CO and H2 on iron-based catalyst with addition of Zr and Ni were investigated using temperature programmed desorption process. It was found that on the carburized iron-based catalysts, molecular state and dissociative state CO existed together. The addition of Zr was preferential for the molecular state adsorption of CO on iron-based catalyst and the presence of Ni was beneficial to the dissociative adsorption of CO. On H2 reduced catalysts, hydrogen mainly adsorbs on the surface iron sites and surface oxide sites. On CO reduced catalysts, hydrogen probably existed as the most stable CH and OH species. The addition of Zr was not benefit to the dissociative adsorption of hydrogen on iron-based catalyst and the presence of Ni was preferential for the dissociative adsorption of hydrogen.

Keywords: adsorption, Fischer-Tropsch synthesis, iron-based catalysts

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
423 Studying the Intercalation of Low Density Polyethylene/Clay Nanocomposites after Different UV Exposures

Authors: Samir Al-Zobaidi

Abstract:

This study attempts to understand the effect of different UV irradiation methods on the intercalation of LDPE/MMT nanocomposites, and its molecular behavior at certain isothermal crystallization temperature. Three different methods of UV exposure were employed using single composition of LDPE/MMT nanocomposites. All samples were annealed for 5 hours at a crystallization temperature of 100oC. The crystallization temperature was chosen to be at large supercooling temperature to ensure quick and complete crystallization. The raw material of LDPE consisted of two stable monoclinic and orthorhombic phases according to XRD results. The thermal behavior of both phases acted differently when UV exposure method was changed. The monoclinic phase was more dependent on the method used compared to the orthorhombic phase. The intercalation of clay, as well as, the non-isothermal crystallization temperature, has also shown a clear dependency on the type of UV exposure. A third phase that is thermally less stable was also observed. Its respond to UV irradiation was greater since it contains low molecular weight entities which make it more vulnerable to any UV exposure.

Keywords: LDPE/MMt nanocomposites, crystallization, UV irradiation, intercalation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
422 Application of Whole Genome Amplification Technique for Genotype Analysis of Bovine Embryos

Authors: S. Moghaddaszadeh-Ahrabi, S. Farajnia, Gh. Rahimi-Mianji, A. Nejati-Javaremi

Abstract:

In recent years, there has been an increasing interest toward the use of bovine genotyped embryos for commercial embryo transfer programs. Biopsy of a few cells in morulla stage is essential for preimplantation genetic diagnosis (PGD). Low amount of DNA have limited performing the several molecular analyses within PGD analyses. Whole genome amplification (WGA) promises to eliminate this problem. We evaluated the possibility and performance of an improved primer extension preamplification (I-PEP) method with a range of starting bovine genomic DNA from 1-8 cells into the WGA reaction. We optimized a short and simple I-PEP (ssI-PEP) procedure (~3h). This optimized WGA method was assessed by 6 loci specific polymerase chain reactions (PCRs), included restriction fragments length polymorphism (RFLP). Optimized WGA procedure possesses enough sensitivity for molecular genetic analyses through the few input cells. This is a new era for generating characterized bovine embryos in preimplantation stage.

Keywords: Whole genome amplification (WGA), Genotyping, Bovine, Preimplantation genetic diagnosis (PGD)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
421 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks

Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei

Abstract:

An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.

Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
420 DNA Computing for an Absolute 1-Center Problem: An Evolutionary Approach

Authors: Zuwairie Ibrahim, Yusei Tsuboi, Osamu Ono, Marzuki Khalid

Abstract:

Deoxyribonucleic Acid or DNA computing has emerged as an interdisciplinary field that draws together chemistry, molecular biology, computer science and mathematics. Thus, in this paper, the possibility of DNA-based computing to solve an absolute 1-center problem by molecular manipulations is presented. This is truly the first attempt to solve such a problem by DNA-based computing approach. Since, part of the procedures involve with shortest path computation, research works on DNA computing for shortest path Traveling Salesman Problem, in short, TSP are reviewed. These approaches are studied and only the appropriate one is adapted in designing the computation procedures. This DNA-based computation is designed in such a way that every path is encoded by oligonucleotides and the path-s length is directly proportional to the length of oligonucleotides. Using these properties, gel electrophoresis is performed in order to separate the respective DNA molecules according to their length. One expectation arise from this paper is that it is possible to verify the instance absolute 1-center problem using DNA computing by laboratory experiments.

Keywords: DNA computing, operation research, 1-center problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
419 Detection of Transgenes in Cotton (Gossypium hirsutum L.) by Using Biotechnology/Molecular Biological Techniques

Authors: Ahmad Ali Shahid, Muhammad Shakil Shaukat, Kamran Shehzad Bajwa, Abdul Qayyum Rao, Tayyab Husnain

Abstract:

Agriculture is the backbone of economy of Pakistan and cotton is the major agricultural export and supreme source of raw fiber for our textile industry. To combat severe problems of insect and weed, combination of three genes namely Cry1Ac, Cry2A and EPSPS genes was transferred in locally cultivated cotton variety MNH-786 with the use of Agrobacterium mediated genetic transformation. The present study focused on the molecular screening of transgenic cotton plants at T3 generation in order to confirm integration and expression of all three genes (Cry1Ac, Cry2A and EPSP synthase) into the cotton genome. Initially, glyphosate spray assay was used for screening of transgenic cotton plants containing EPSP synthase gene at T3 generation. Transgenic cotton plants which were healthy and showed no damage on leaves were selected after 07 days of spray. For molecular analysis of transgenic cotton plants in the laboratory, the genomic DNA of these transgenic cotton plants were isolated and subjected to amplification of the three genes. Thus, seventeen out of twenty (Cry1Ac gene), ten out of twenty (Cry2A gene) and all twenty (EPSP synthase gene) were produced positive amplification. On the base of PCR amplification, ten transgenic plant samples were subjected to protein expression analysis through ELISA. The results showed that eight out of ten plants were actively expressing the three transgenes. Real-time PCR was also done to quantify the mRNA expression levels of Cry1Ac and EPSP synthase gene. Finally, eight plants were confirmed for the presence and active expression of all three genes at T3 generation.

Keywords: Agriculture, Cotton, Transformation, Cry Genes, ELISA and PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3074
418 Mercerization Treatment Parameter Effect on Natural Fiber Reinforced Polymer Matrix Composite: A Brief Review

Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Azriszul Mohd Amin, Ahmad Mujahid Ahmad Zaidi, Saparudin Ariffin

Abstract:

Environmental awareness and depletion of the petroleum resources are among vital factors that motivate a number of researchers to explore the potential of reusing natural fiber as an alternative composite material in industries such as packaging, automotive and building constructions. Natural fibers are available in abundance, low cost, lightweight polymer composite and most importance its biodegradability features, which often called “ecofriendly" materials. However, their applications are still limited due to several factors like moisture absorption, poor wettability and large scattering in mechanical properties. Among the main challenges on natural fibers reinforced matrices composite is their inclination to entangle and form fibers agglomerates during processing due to fiber-fiber interaction. This tends to prevent better dispersion of the fibers into the matrix, resulting in poor interfacial adhesion between the hydrophobic matrix and the hydrophilic reinforced natural fiber. Therefore, to overcome this challenge, fiber treatment process is one common alternative that can be use to modify the fiber surface topology by chemically, physically or mechanically technique. Nevertheless, this paper attempt to focus on the effect of mercerization treatment on mechanical properties enhancement of natural fiber reinforced composite or so-called bio composite. It specifically discussed on mercerization parameters, and natural fiber reinforced composite mechanical properties enhancement.

Keywords: Mercerization treatment, mechanical properties, natural fiber and bio composite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4693
417 A Fundamental Study on the Anchor Performance of Non-Surface Treated Multi CFRP Tendons

Authors: Woo-tai Jung, Jong-sup Park, Jae-yoon Kang, Moon-seoung Keum

Abstract:

CFRP (Carbon Fiber Reinforced Polymer) is mainly used as reinforcing material for degraded structures owing to its advantages including its non-corrodibility, high strength and lightweight properties. Recently, dedicated studies focused not only on its simple bonding but also on its tensioning. The tension necessary for prestressing requires the anchoring of multi-CFRP tendons with high capacity and the surface treatment of the CFRP tendons may also constitute an important issue according to the type of anchor. The wedge type, swage type or bonded type anchor can be used to anchor the CFRP tendon. The bonded type anchor presents the disadvantage to lengthen the length of the anchor due to the low bond strength of the CFRP tendon without surface treatment. This study intends to overcome this drawback through the application of a method enlarging the bond area at the end of the CFRP tendon. This method enlarges the bond area by splitting the end of the CFRP tendon along its length and can be applied when CFRP is produced by pultrusion. The application of this method shows that the mono-CFRP tendon and 3-multi CFRP tendon secured the anchor performance corresponding to the tensile performance of the CFRP tendon and that the 7-multi tendon secured anchor performance corresponding to 90% of the tensile strength due to the occurrence of buckling in the steel tube anchorage. 

Keywords: Carbon fiber reinforced polymer (CFRP), Tendon, Anchor, Tensile property, Bond strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
416 Inhibitory Effects of Ambrosia trifida L. on the Development of Root Hairs and Protein Patterns of Radicles

Authors: Ji-Hyon Kil, Kew-Cheol Shim, Kyoung-Ae Park, Kyoungho Kim

Abstract:

Ambrosia trifida L. is designated as invasive alien species by the Act on the Conservation and Use of Biodiversity by the Ministry of Environment, Korea. The purpose of present paper was to investigate the inhibitory effects of aqueous extracts of A.trifida on the development of root hairs of Triticum aestivum L., and Allium tuberosum Rottler ex Spreng and the electrophoretic protein patterns of their radicles. The development of root hairs was inhibited by increasing of aqueous extract concentrations. Through SDS-PAGE, the electrophoretic protein bands of extracted proteins from their radicles were appeared in controls, but protein bands of specific molecular weight disappeared or weakened in treatments. In conclusion, inhibitory effects of A. trifida made two receptor species changed morphologically, and at the molecular level in early growth stage.

Keywords: Ambrosia trifida L., invasive alien species, inhibitory effect, root hair, electrophoretic protein, radicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
415 High Efficiency, Selectivity against Cancer Cell Line of Purified L-Asparaginase from Pathogenic Escherichia coli

Authors: Hazim Saadoon Aljewari, Mohammed Ibraheem Nader, Abdul Hussain M. Alfaisal, NatthidaWeerapreeyakul, Sahapat

Abstract:

L-asparaginase was extracted from pathogenic Escherichia coli which was isolated from urinary tract infection patients. L-asparaginase was purified 96-fold by ultrafiltration, ion exchange and gel filtration giving 39.19% yield with final specific activity of 178.57 IU/mg. L-asparaginase showed 138,356±1,000 Dalton molecular weight with 31024±100 Dalton molecular mass. Kinetic properties of enzyme resulting 1.25×10-5 mM Km and 2.5×10-3 M/min Vmax. L-asparaginase showed a maximum activity at pH 7.5 when incubated at 37 ºC for 30 min and illustrated its full activity (100%) after 15 min incubation at 20-37 ºC, while 70% of its activity was lost when incubated at 60 ºC. L-asparaginase showed cytotoxicity to U937 cell line with IC50 0.5±0.19 IU/ml, and selectivity index (SI=7.6) about 8 time higher selectivity over the lymphocyte cells. Therefore, the local pathogenic E. coli strains may be used as a source of high yield of L-asparaginase to produce anti cancer agent with high selectivity.

Keywords: L-asparaginase, Purification, Cytotoxicity, selectivity index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
414 Starch Based Biofilms for Green Packaging

Authors: Roshafima R. Ali, W. A. Wan Abdul Rahman, Rafiziana M. Kasmani, N. Ibrahim

Abstract:

This current research focused on development of degradable starch based packaging film with enhanced mechanical properties. A series of low density polyethylene (LDPE)/tapioca starch compounds with various tapioca starch contents were prepared by twin screw extrusion with the addition of maleic anhydride grafted polyethylene as compatibilizer. Palm cooking oil was used as processing aid to ease the blown film process, thus, degradable film can be processed via conventional blown film machine. Studies on their characteristics, mechanical properties and biodegradation were carried out by Fourier Transform Infrared (FTIR) spectroscopy and optical properties, tensile test and exposure to fungi environment respectively. The presence of high starch contents had an adverse effect on the tensile properties of LDPE/tapioca starch blends. However, the addition of compatibilizer to the blends improved the interfacial adhesion between the two materials, hence, improved the tensile properties of the films. High content of starch amount also was found to increase the rate of biodegradability of LDPE/tapioca starch films. It can be proved by exposure of the film to fungi environment. A growth of microbes colony can be seen on the surface of LDPE/tapioca starch film indicates that the granular starch present on the surface of the polymer film is attacked by microorganisms, until most of it is assimilated as a carbon source.

Keywords: Degradable polymer, starch based biofilms, blown film extrusion, green food packaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5173
413 Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid

Authors: M. S. M. Yusof, R. Ramli, S. K. C. Soh, N. Ismail, N. Ngah

Abstract:

This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.

Keywords: Methoxybenzoyl isothiocyanate, amino acid, threonine, antibacterial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
412 Optimisation of Polycyclic AromaticHydrocarbon Removal from Contaminated Soilusing Modified Fenton Treatment

Authors: Venny, S. Gan, H. K. Ng

Abstract:

The performance of modified Fenton (MF) treatment to promote PAH oxidation in artificially contaminated soil was investigated in packed soil column with a hydrogen peroxide (H2O2) delivery system simulating in situ injection. Soil samples were spiked with phenanthrene (low molecular weight PAH) and fluoranthene (high molecular weight PAH) to an initial concentration of 500 mg/kg dried soil each. The effectiveness of process parameters H2O2/soil, iron/soil, chelating agent/soil weight ratios and reaction time were studied using a 24 three level factorial design experiments. Statistically significant quadratic models were developed using Response Surface Methodology (RSM) for degrading PAHs from the soil samples. Optimum operating condition was achieved at mild range of H2O2/soil, iron/soil and chelating agent/soil weight ratios, indicating cost efficient method for treating highly contaminated lands.

Keywords: Fenton, polycyclic aromatic hydrocarbon, chelate, response surface methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
411 Investigation of Monochromatization Light Effect at Molecular/Atomic Level in Electronegative-Electropositive Gas Mixtures Plasma

Authors: L.C. Ciobotaru

Abstract:

In electronegative-electropositive gas mixtures plasma, at a total pressure varying in the range of ten to hundred Torr, the appearance of a quasi-mochromatization effect of the emitted radiation was reported. This radiation could be the result of the generating mechanisms at molecular level, which is the case of the excimer radiation but also at atomic level. Thus, in the last case, in (Ne+1%Ar/Xe+H2) gas mixtures plasma in a dielectric barrier discharge, this effect, called M-effect, consists in the reduction of the discharge emission spectrum practice at one single, strong spectral line with λ = 585.3 nm. The present paper is concerned with the characteristics comparative investigation of the principal reaction mechanisms involved in the quasi-monochromatization effect existence in the case of the excimer radiation, respectively of the Meffect. Also, the paper points out the role of the metastable electronegative atoms in the appearance of the monochromatization – effect at atomic level.

Keywords: Colombian forces, Direct Harpoon reaction, Monochromatization – effect, Resonant polar three-body reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
410 Molecular Dynamics Study on Laninamivir Inhibiting Neuraminidases of H5N1 and pH1N1 Influenza a Viruses

Authors: A. Meeprasert, W. Khuntawee, S. Hannongbua, T. Rungrotmongkol

Abstract:

Viral influenza A subtypes H5N1 and pandemic H1N1 (pH1N1) have worldwide emerged and transmitted. The most common anti-influenza drug for treatment of both seasonal and pandemic influenza viruses is oseltamivir that nowadays becomes resistance to influenza neuraminidase. The novel long-acting drug, laninamivir, was discovered for treatment of the patients infected with influenza B and influenza A viruses. In the present study, laninamivir complexed with wild-type strain of both H5N1 and pH1N1 viruses were comparatively determined the structures and drug-target interactions by means of molecular dynamics (MD) simulations. The results show that the hydrogen bonding interactions formed between laninamivir and its binding residues are likely similar for the two systems. Additionally, the presence of intermolecular interactions from laninamivir to the residues in the binding pocket is established through their side chains in accordance with hydrogen bond interactions.

Keywords: Laninamivir, neuraminidase, H5N1, pandemic H1N1, wild-type, MD simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
409 Does Material Choice Drive Sustainability of 3D Printing?

Authors: Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye

Abstract:

Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine multiple impact categories, comparing environmental impacts per part made for several scenarios per machine. Results showed that most printers’ ecological impacts were dominated by electricity use, not materials, and the changes in electricity use due to different plastics was not significant compared to variation from one machine to another. Variation in machine idle time determined impacts per part most strongly. However, material impacts were quite important for the inkjet printer hacked to print in salt: In its optimal scenario, it had up to 1/38th the impacts coreper part as the worst-performing machine in the same scenario. If salt parts were infused with epoxy to make them more physically robust, then much of this advantage disappeared, and material impacts actually dominated or equaled electricity use. Future studies should also measure DMLS and SLS processes / materials.

Keywords: 3D printing, Additive Manufacturing, Sustainability, Life-cycle assessment, Design for Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3551
408 Preparation of Carbon Nanofiber Reinforced HDPE Using Dialkylimidazolium as a Dispersing Agent: Effect on Thermal and Rheological Properties

Authors: J. Samuel, S. Al-Enezi, A. Al-Banna

Abstract:

High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.

Keywords: HDPE, carbon nanofiber, ionic liquid, complex viscosity, modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700
407 Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application

Authors: Divyanka Sontakke, Arpit Thakre, D. K Shinde, Sujata Parmeshwaran

Abstract:

Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.

Keywords: Electrospinning, polyacrylonitrile carbon nanofibres, heat treatment, electrical conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
406 Molecular Characterization of Echinococcus granulosus through Amplification of 12S rRNA Gene and Cox1 Gene Fragments from Cattle in Chittagong, Bangladesh

Authors: M. Omer Faruk, A. M. A. M. Zonaed Siddiki, M. Fazal Karim, Md. Masuduzzaman, S. Chowdhury, Md. Shafiqul Islam, M. Alamgir Hossain

Abstract:

The dog tapeworms Echinococcus granulosus develop hydatid cysts in various organs in human and domestic animals worldwide including Bangladesh. The aim of this study was to identify and characterize the genotype of E. granulosus isolated from cattle using 12S rRNA and Cytochrome oxidase 1 (COX 1) genes. A total of 43 hydatid cyst samples were collected from 390 examined cattle samples derived from slaughterhouses. Among them, three cysts were fertile. Genomic DNA was extracted from germinal membrane and/or protoscoleces followed by PCR amplification of mitochondrial 12S rRNA and Cytochrome oxidase 1 gene fragments. The sequence data revealed existence of G1 (64.28%) and possible G3 (21.43%) genotypes for the first time in Bangladesh. The study indicates that common sheep strain G1 is the dominant subtype of E. granulosus in Chittagong region of Bangladesh. This will increase our understanding of the epidemiology of hydatidosis in the southern part of the country and will be useful to plan suitable control measures in the long run.

Keywords: Echinococcus granulosus, molecular characterization, cattle, Bangladesh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1023
405 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide

Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov

Abstract:

The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.

Keywords: Refractometric method, dielectric constant, molecular dynamics, aqueous solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939