
 
Abstract—Environmental impacts of six 3D printers using 

various materials were compared to determine if material choice 
drove sustainability, or if other factors such as machine type, machine 
size, or machine utilization dominate. Cradle-to-grave life-cycle 
assessments were performed, comparing a commercial-scale FDM 
machine printing in ABS plastic, a desktop FDM machine printing in 
ABS, a desktop FDM machine printing in PET and PLA plastics, a 
polyjet machine printing in its proprietary polymer, an SLA machine 
printing in its polymer, and an inkjet machine hacked to print in salt 
and dextrose. All scenarios were scored using ReCiPe Endpoint H 
methodology to combine multiple impact categories, comparing 
environmental impacts per part made for several scenarios per 
machine. Results showed that most printers’ ecological impacts were 
dominated by electricity use, not materials, and the changes in 
electricity use due to different plastics was not significant compared 
to variation from one machine to another. Variation in machine idle 
time determined impacts per part most strongly. However, material 
impacts were quite important for the inkjet printer hacked to print in 
salt: In its optimal scenario, it had up to 1/38th the impacts coreper 
part as the worst-performing machine in the same scenario. If salt 
parts were infused with epoxy to make them more physically robust, 
then much of this advantage disappeared, and material impacts 
actually dominated or equaled electricity use. Future studies should 
also measure DMLS and SLS processes / materials. 

 
Keywords—3D printing, Additive Manufacturing, Sustainability, 

Life-cycle assessment, Design for Environment. 

I. INTRODUCTION 

D printing is revolutionizing some fields of manufacturing, 
especially prototyping [1]. It is sometimes assumed to be a 

more sustainable way to manufacture, but such blanket 
statements are unrealistic for any manufacturing technology, 
as production methods for different kinds of finished products 
vary so widely. For some kinds of products it can be a great 
improvement, and indeed it enables the production of some 
products that could not be economically produced any other 
way. GE is printing jet engine nozzles predicted to save 
millions of gallons of fuel per year due to geometries enabled 
by 3D printing, which were not economically viable through 
previous manufacturing methods [2]. Many people assume 3D 
printing virtually eliminates waste, but this is only true for 
some circumstances, such as FDM machines not using support 
material; other 3D printers can produce as much as 43% 
material waste, even before support material is counted (see 
Results section). Many people also assume that 3D printing is 
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more sustainable because it can eliminate transportation of 
consumer goods [3]. Unfortunately, this is misguided because 
transportation only represents a small fraction of lifetime 
ecological impacts for most products [4], even ignoring the 
fact that 3D printers still require raw materials to be 
transported. On the other hand, Markus Kayser's "solar sinter" 
demonstrated 3D printing of glass from desert sand, an 
abundant, non-toxic, local material fused together directly by 
sunlight in a printer run entirely from solar power [5]. One 
could hardly ask for a more sustainable manufacturing method 
(assuming the resulting printed objects are robust). As a result 
of all these issues, there is not one simple answer. Recent 
studies [6], [7] have shown that even for the relatively limited 
scope of prototyping plastic parts, 3D printing can be either 
better or worse than status-quo methods such as machining, 
depending on multiple factors.  

To drive the 3D printing industry toward a future where it 
does become an inherently more sustainable manufacturing 
method than other options, we should study where the biggest 
impacts of 3D printing lie and how to minimize them. 
Moreover, we should communicate these results in a way that 
is easy for industry to understand and make decisions based on 
it. This study examined whether material choice was the most 
important factor determining the sustainability of 3D printing, 
or if other factors such as machine size or utilization 
frequency were dominant. Some types of 3D printing allow 
for very “green” material choices—ones which are renewable 
or abundant, non-toxic, recyclable or compostable, and which 
have little embodied energy or resources. A modest example is 
PLA bioplastic (an improvement compared to ABS); more 
daring examples include salt, sugar [8], starch [9], or sawdust 
[10]. Some of these materials also enable low-energy printing 
processes, because they rely on chemical adhesion as opposed 
to melting plastic or curing photopolymers with UV light. This 
study also measured such factors, as they are usually 
inextricable from material choice. An SLA machine can only 
print in photopolymers, an inkjet machine cannot melt 
plastics, and so on. So for a complete picture, whole-system 
printer performance must be considered, as well as the 
different materials. 

II. BACKGROUND 

Some specific environmental impacts of 3D printing have 
been studied in depth—usually energy use [11], [12], [13], but 
occasionally also toxicity [14]. Even when researchers do 
specifically study health impacts from 3D printing, such as 
evaporated plastic particles in the air [15], they rarely compare 
these to energy use or other impacts to find top priorities for 
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sustainability. Only one study was found to have measured 
multiple kinds of ecological impacts together to balance the 
effects of material use, waste, toxins, and other factors against 
energy use in a life-cycle assessment (“LCA”) with combined 
single-score measurements, comparing several 3D printer 
types [16]. That study was from 1999, so even without the 
current project's new focus on materials, the older study 
should be updated for changes in 3D printer technology, 
available 3D printing materials, and LCA tools. Several of the 
machine types and materials measured here were not in use 
then. 

III. METHODS 

A. LCA Scope and Functional Units 

This project extends the work of recent studies [6], [7] by 
measuring more machines and testing variations in material 
choice. For this study, the printers measured were a large 
commercial-scale Dimension 1200BST fused-deposition 
modeling (“FDM”) machine, a small desktop-scale Afinia 
H480 FDM machine, a small desktop Type A Machines Series 
1 FDM machine, an Objet Connex 350 polyjet machine, a 3D 
Systems Projet 6000 stereolithography (“SLA”) machine, and 
a Zcorp 310 inkjet machine. 

LCAs were conducted in SimaPro software, with data 
primarily from the EcoInvent database, but some data coming 
from US Franklin LCI and other standard databases. ReCiPe 
Endpoint H methodology [17] was used to combine 17 
different categories of ecological impact (including climate 
change, toxicity, resource depletion, and other factors) into 
unified single scores. LCA scope was cradle-to-grave, 
including electricity used to print parts, material comprising 
the parts printed, and waste material generated during printing, 
as well as electricity use while machines idle or start up, 
embodied impacts of raw materials and manufacture of the 
machines themselves, transportation of the machines to and 
from UC Berkeley, and disposal of the machines at their end 
of life, conservatively assumed to be five years, since no 3D 
printer manufacturer was willing to provide lifetime estimates, 
and estimates from an informal survey of prototypers 
produced few and highly varying answers. 

Masses and manufacturing processes of printer components 
were not provided by the manufacturers, so they had to be 
estimated by measuring the dimensions of every one of the 
dozens of components that could be accessed, and calculating 
their masses by standard densities of steel, aluminum, glass, 
polyurethane, ABS, copper wire and motor windings, etc. 
Electronics were estimated by area of circuit board, length of 
cable, or by approximate equivalence to existing items in the 
databases (for example, 1 desktop computer for the SLA 
machine’s control and interface electronics, since the actual 
electronics were inaccessible).These component estimates are 
uncertain, but environmental impacts of the entire machines’ 
materials and manufacturing was usually less than 10% of 
lifetime impacts, so further precision was not deemed 
necessary. Electricity use was measured with a WattsUp Pro 
ES power datalogger, except where raw data was already 

available from previous studies. Ecological impacts from 
electricity were modeled as average US electricity grid mix. 
Disposal was modeled with a standard combination of landfill 
and recycling, the EcoInvent process “Durable goods waste 
scenario/US S.” 

These different printers work in very different ways, with 
different kinds of environmental impacts, so to create a fair 
“apples-to-apples” comparison, ecological impacts of different 
materials and printers were compared per object printed. The 
functional unit was the printing of a single thin-walled part, 
designed to be representative of a typical prototyping job—see 
Fig. 1. Industry representatives told us that roughly “90%” of 
their customers’ prototyping jobs were thin-walled plastic 
enclosures for consumer products. 

 

 

Fig. 1 Two units of the printed part, showing inside and outside 

B. Materials 

The Dimension (large FDM) and Afinia (one of the desktop 
FDMs) printed in ABS plastic. The Type A (the other desktop 
FDM) printed in PET plastic and PLA bioplastic. These are all 
fairly standard plastics today. LCAs and toxicological studies 
alike have found that PLA has the lowest health and 
environmental impacts of the three, followed by PET and then 
ABS [18], [19]. PLA is notable because it is a bioplastic, made 
from agricultural sources such as corn rather than fossil fuels, 
and it has a significantly lower melting point, allowing 
printers to extrude it with less energy use. In addition, neither 
PLA nor PET requires a 3D printer to have a heated bed to 
avoid curling as ABS does [20], which should save significant 
energy.  

The Zcorpprinter generally uses a proprietary plaster 
powder bonded with proprietary inkjet ink. However, 
measurements here were performed with a Zcorp printer 
hacked to print in many alternative materials, including salt, 
sawdust, and concrete. Such hacking is done by a small but 
growing community of people pursuing both eco-friendly 
materials and cheaper materials than the proprietary ones sold 
by printer manufacturers. The Zcorp machine measured was 
hacked by UC Berkeley architecture professor Ron Rael and 
his students, working with their own proprietary formulations, 
so a public-domain recipe was taken from an internet forum 
where people trade recipes for do-it-yourself 3D printer 
materials [21], and Raelstatedit was similar enough for 
accurate modeling. This “salt” printing recipe was a powder 
mixture of 88% fine-ground salt and 12% maltodextrin, 
bonded with a liquid mixture of 280 mL isopropyl alcohol, 
920 mL distilled water, and 45 mL food coloring per inkjet 
bottle. (One bottle lasts for many print jobs, so the actual 
amount of liquid per print is a fraction of this.)Since this 
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material by itself is fragile, parts are very often strengthened 
after printing by soaking epoxy, cyanoacrylate, or other 
bonding agents into the salt printout. Since the ecological 
impacts of epoxy are roughly 47 times larger than the salt / 
dextrose / isopropyl material (as measured in ReCiPe 
Endpoint H points per unit mass), LCA scores with and 
without epoxy were both calculated for each scenario of the 
inkjet. This range of scores with and without epoxy should 
cover the whole range of materials the inkjet printer is likely 
to use, from proprietary plaster formulations to hacker 
formulations of sawdust or concrete or other materials. 

The Projet used a proprietary SLA resin called Accura ABS 
White SL7810, a polymer that hardens with exposure to UV 
light. Despite its name, it was not ABS. Its somewhat vague 
Materials Safety Data Sheet (MSDS) said it was composed of 
hydrogenated bisphenolA epoxy resin, 3-ethyloxetane-3-
methanol, propylene carbonate, “sulfonium salt mixture,” and 
bisphenol A epoxy resin. While epoxy resin was in the 
EcoInvent database, the other chemicals largely did not match 
chemicals in the EcoInvent or other LCA databases available 
to this team, so a sensitivity analysis compared 15 different 
chemicals considered most likely to match these ingredients’ 
environmental impacts. Extreme high and low ReCiPe point 
values were eliminated, and final LCAs included two 
scenarios each—a high estimate assuming the material was 
entirely epoxy resin, and a low estimate using “acrylic acid, at 
plant”. Resulting differences in total ReCiPe Endpoint H 
points per part printed in the four different SLA machine 
utilization scenarios ranged from 16% (running 24 hrs/day, 7 
days/wk, printing 4 parts at a time) to a 0.2% difference 
(printing 1 part/wk but left idling when not in use). Final 
results shown later in the Results section use the high 
estimates, as the MSDS did explicitly list epoxy resin as 
comprising 30–60% of the material. 

The Objet used a proprietary “polyjet”UV-curing polymer 
called Fullcure 720, whose MSDS listed the ingredients exo-
1,7,7-trimethylbicyclo[2.2.1]-hept-2-yl acrylate, acrylic 
monomer, urethane acrylate oligomer, acrylate oligomer, and 
epoxy acrylate. Again, exact matches for all these chemicals 
were not available in the databases, but sensitivity analysis 
was performed, so each scenario had a high estimate (epoxy 
resin again) and low estimate (“acrylic acid, at plant” again) 
for material impacts. Resulting differences in total ReCiPe 
Endpoint H points per part printed ranged from 9% (running 
24 hrs/day, 7 days/wk, printing 4 parts at a time) to a 0.2% 
difference (printing 1 part/wk but left idling when not in use). 
Final results shown here use the high estimates, for 
consistency with the SLA machine. High estimates were also 
chosen because the purpose of this study was to see how large 
variations due to material choice could be, and even the lower-
impact scenarios for these materials these materials were at the 
higher-impact end compared to salt and dextrose. 

While all of these machine types (FDM, polyjet, inkjet, and 
SLA) can print in different materials, the materials listed 
above were the only materials made available to us by the 
machine operators. Only the Type A machine was measured 
using two different materials; for all other machines, the type 

of machine was tied to one type of material, and any variation 
was from theoretical calculations of sensitivity analysis. While 
this is certainly a limitation of the study, we believe the results 
show that this does not affect the validity of the conclusions 
(see Results section). 

C. Machine Utilization 

3D printer utilization varies widely in industry—some 
machines run nearly 24 hours/day, 7 days/week, especially 
those used for manufacturing finished parts (as opposed to 
prototypes), or those run by contractors who print for hire 
(“job shops”). Other machines may go for days or weeks (even 
months) between print jobs, especially small inexpensive 
desktop units used by design firms for occasional prototypes, 
or used by home hobbyists. An informal utilization survey 
sent to nearly a thousand product design practitioners provided 
little insight, with few responses and a wide range of answers, 
so no defensible “average” utilization could be determined. 
Therefore, a range of scenarios was calculated. Maximum 
utilization was defined as printing parts 24 hrs/day, 7 days/wk, 
for a machine’s entire life (which is not actually possible, but 
represents the asymptotic “best case” scenario).  

Some printers can only print one part at a time (large and 
small FDM machines), but some printers can print several 
parts in almost exactly the same time it takes to print a single 
part, without using noticeably more energy (polyjet, inkjet, 
and SLA machines). Therefore, maximum utilization for 
polyjet, inkjet, and SLA machines is not only printing parts 24 
hrs/day, 7 days/week, but also printing multiple parts at once. 
The number of parts that can be printed at once without adding 
more print time (thus adding energy use and higher 
environmental impacts) was not clearly defined for any of the 
machines, and surely varies from machine to machine, since 
the SLA machine can print parts throughout its entire print bed 
without adding much more time, while the inkjet and polyjet 
machines can only print parts within the width of their moving 
print heads without adding more time. Budget and time 
constraints did not allow the printing of large numbers of parts 
to test the limits of these improved efficiencies, nor did any of 
the company representatives provide hard data on the number 
of additional parts printed before print times increased, but 
informal discussions with machine operators indicated that for 
the scale of parts being used as the functional unit here, at 
least four parts could be printed in almost the exact same time, 
with almost the exact same energy use, as one part. Perhaps 
even more parts may be printed simultaneously before the 
additional time and energy use would become appreciable 
(one company representative suggested ten parts or more at a 
time), but such changes would create such extreme 
improvements to the ecological impact scores that they should 
be backed by real empirical data, not mere estimations. 

Here, “minimum” utilization was defined as printing one 
part per week, since results of the utilization survey indicated 
that was a common (if not necessarily typical or dominant) 
rate around the low end of professional use. However, this 
minimum utilization was split into two separate scenarios, 
because the amount of electricity used by idle machines left on 
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prototypes do not need physical strength or durability, it can 
be a requirement for functional prototypes, so this could be a 
significant decision point for some users. 

V. LIMITATIONS 

For this study, access was available to a limited number of 
materials and machines compared to the vast variety that 
exists in the market today. We believe it does not harm the 
validity of conclusions here, but more data would improve 
confidence. The lack of a direct metal laser sinterer (“DMLS” 
printer) is significant, as DMLS uses significantly more 
energy to print parts in metal than the printers here use to print 
parts in plastic. This would increase the variation in 
environmental impacts due to material choice. Access to such 
machines was unavailable, but readers trying to minimize their 
environmental impacts per part made will be content with the 
data here, as DMLS will only have higher impacts compared 
to printing in plastic or salt. Selective laser sintering (“SLS”) 
of plastics would also be useful to measure. For the sake of 
completeness, future studies should measure more machine 
types and machine sizes.  

Machine access was also limited in the number of parts that 
could be printed, not allowing finer-grained study of 
maximum utilization in machines that could print multiple 
parts at once. However, as mentioned in Methods and Results, 
reduced eco-impacts from increases in utilization can be easily 
estimated by the reader. 

VI. CONCLUSIONS 

As 3D printing rapidly becomes a large industry, the 
industry’s sustainability rapidly becomes important. Part of 
this is determining what role material choices play in the 
sustainability of 3D printing—whether they dominate impacts, 
are insignificant, or somewhere in between. Today, 3D 
printing does not commonly use “green” materials which 
cause few ecological impacts in their extraction or production. 
The possible exception is PLA bioplastic, which is commonly 
used, and which this study shows to lower printer energy use 
as well as having lower embodied impacts than ABS plastic. 
Innovative approaches, such as printing salt with an inkjet 3D 
printer, can lower ecological impacts per part even further. 
Printing this material on this machine reduced the ReCiPe 
Endpoint H impact score per part to as much as 1/35th the 
score of the highest-impact printer and material at maximum 
utilization (printing parts 24 hrs/day, 7 days/week). Other low-
impact materials could include sawdust, plaster, or other 
relatively inert substances that can be bonded with low-
toxicity adhesives. When higher-toxicity adhesives such as the 
epoxy studied here are required to give such materials 
adequate physical strength, they can eliminate the advantages 
of the “greener” material. Here, an inkjet printing salt parts 
later infused with epoxy scored worse than a desktop FDM 
printing PLA, and similar to a desktop FDM printing PET. 

As much of a difference as “green” materials and printers 
can make, these advantages can only be realized if machine 
utilization is also optimized, to avoid wasting electricity 

through powered-up idling between prints, or inefficient print 
setups. Idling is particularly important. A printer running at 
low utilization (printing one part per week but sitting 
powered-on for all its idle time) can have up to roughly 95 
times the ecological impact score as the same printer running 
at maximum utilization (printing 24 hrs/day, 7 days/wk, 4 
parts/print). 

With such huge gains possible, 3D printing can be a highly 
sustainable manufacturing method if printer manufacturers, 
operators, and researchers focus their efforts. Future work 
should experiment with and measure the impacts of 3D 
printing with more alternative materials that both have low 
environmental impacts themselves and also enable low-energy 
printing processes. Industry should design printer interfaces 
that help maximize printer utilization to avoid idle time and 
amortize impacts of machines. For example, interfaces to 
encourage sharing printers among multiple users, interfaces to 
minimize material use (and thus also print time) in FDM 
machines, or interfaces to maximize the number of parts 
printed together for SLA, polyjet, and inkjet machines. 
Printers should also allow automatic power-saving standby 
modes to avoid the impacts of idle power consumption. 
Ideally, industry should also steer away from business models 
where proprietary materials are the primary profit source, with 
printers merely a vehicle for material demand, so that more 
material experimentation is enabled. 3D printing can already 
be a more sustainable manufacturing method for some 
products; with efforts such as these, it might become a greener 
way to make most products. 
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