Search results for: magnetic pole position.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1194

Search results for: magnetic pole position.

1074 Unsteady MHD Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of spherical cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter (K), magnetic parameter (m) and elasticoviscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Porous media, Second order fluids, Spherical cross-section, Magnetic parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
1073 Evaluation of the Heating Capability and in vitro Hemolysis of Nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) Ferrites Prepared by Sol-gel Method

Authors: Laura Elena De León Prado, Dora Alicia Cortés Hernández, Javier Sánchez

Abstract:

Among the different cancer treatments that are currently used, hyperthermia has a promising potential due to the multiple benefits that are obtained by this technique. In general terms, hyperthermia is a method that takes advantage of the sensitivity of cancer cells to heat, in order to damage or destroy them. Within the different ways of supplying heat to cancer cells and achieve their destruction or damage, the use of magnetic nanoparticles has attracted attention due to the capability of these particles to generate heat under the influence of an external magnetic field. In addition, these nanoparticles have a high surface area and sizes similar or even lower than biological entities, which allow their approaching and interaction with a specific region of interest. The most used magnetic nanoparticles for hyperthermia treatment are those based on iron oxides, mainly magnetite and maghemite, due to their biocompatibility, good magnetic properties and chemical stability. However, in order to fulfill more efficiently the requirements that demand the treatment of magnetic hyperthermia, there have been investigations using ferrites that incorporate different metallic ions, such as Mg, Mn, Co, Ca, Ni, Cu, Li, Gd, etc., in their structure. This paper reports the synthesis of nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) ferrites by sol-gel method and their evaluation in terms of heating capability and in vitro hemolysis to determine the potential use of these nanoparticles as thermoseeds for the treatment of cancer by magnetic hyperthermia. It was possible to obtain ferrites with nanometric sizes, a single crystalline phase with an inverse spinel structure and a behavior near to that of superparamagnetic materials. Additionally, at concentrations of 10 mg of magnetic material per mL of water, it was possible to reach a temperature of approximately 45°C, which is within the range of temperatures used for the treatment of hyperthermia. The results of the in vitro hemolysis assay showed that, at the concentrations tested, these nanoparticles are non-hemolytic, as their percentage of hemolysis is close to zero. Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia.

Keywords: Ferrites, heating capability, hemolysis, nanoparticles, sol-gel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862
1072 Stress Evaluation of Rotary Injector Pump Parts in MF285 Tractor Using Finite Element Method

Authors: M. Azadbakht, Y. Fadakar

Abstract:

Since fuel must be injected with appropriate pressure and time for accurate performance of diesel engines, then proper function of engine is influenced by accurate function of injector pump. At first total pump was designed by SolidWorks 2012 software. Then the total relationship of rotor, roller, internal cam ring, pole shoe and plunger in injector pump in MF285 tractor and their performance was shown. During suction state rollers connect with dents in internal cam ring and in pressure course pole shoes have drawer move in rotor and perform tappet action between rollers and plungers. The maximum stress was obtained by using analysis of finite element method. The maximum stress in contact surface of roller and internal cam ring and on roller surface. The maximum amount of this stress is 288.12 MPa. According to conducted analyses, the minimum value for safety factor is related to roller surface and it equals to 2.0477.

Keywords: Rotary injector pump, MF285 tractor, finite element, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3043
1071 Use of Opti-Jet Cs Md1mr Device for Biocide Aerosolisation in 3t Magnetic Resonance

Authors: Robert Pintaric, Joze Matela, Stefan Pintaric, Stanka Vadnjal

Abstract:

Introduction: This work is aimed to represent the use of the OPTI-JET CS MD1 MR prototype for application of neutral electrolyzed oxidizing water (NEOW) in magnetic resonance rooms. Material and Methods: We produced and used OPTI-JET CS MD1 MR aerosolisator whereby was performed aerosolization. The presence of microorganisms before and after the aerosolisation was recorded with the help of cyclone air sampling. Colony formed units (CFU) was counted. Results: The number of microorganisms in magnetic resonance 3T room was low as expected. Nevertheless, a possible CFU reduction of 87% was recorded. Conclusions: The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of microorganisms and consequently the possibility of hospital infections. It has also demonstrated that the use of OPTI-JET CS MD1 MR is very good. With this research, we started new guidelines for aerosolization in magnetic resonance rooms. Future work: We predict that presented technique works very good but we must focus also on time capacity sensors, and new appropriate toxicological studies.

Keywords: Biocide, electrolyzed oxidizing water (EOW), disinfection, microorganisms, OPTI-JET CS MD1MR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
1070 An Ultra-Low Output Impedance Power Amplifier for Tx Array in 7-Tesla Magnetic Resonance Imaging

Authors: Ashraf Abuelhaija, Klaus Solbach

Abstract:

In Ultra high-field MRI scanners (3T and higher), parallel RF transmission techniques using multiple RF chains with multiple transmit elements are a promising approach to overcome the high-field MRI challenges in terms of inhomogeneity in the RF magnetic field and SAR. However, mutual coupling between the transmit array elements disturbs the desirable independent control of the RF waveforms for each element. This contribution demonstrates a 18 dB improvement of decoupling (isolation) performance due to the very low output impedance of our 1 kW power amplifier.

Keywords: EM coupling, Inter-element isolation, Magnetic resonance imaging (MRI), Parallel Transmit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
1069 Numerical Investigation of Unsteady MHD Flow of Second Order Fluid in a Tube of Elliptical Cross-Section on the Porous Boundary

Authors: S. B. Kulkarni, Hasim A. Chikte, V. Murali Mohan

Abstract:

Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of elliptic cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter, magnetic parameter and elastico-viscosity parameter, which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter, magnetic parameter tends to zero, and porosity tends to infinity. The numerical results were simulated in MATLAB software to analyze the effect of Elastico-viscous parameter, porosity parameter, and magnetic parameter on velocity profile. Boundary conditions were satisfied. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Porous media, Elliptic cross-section, Magnetic parameter, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
1068 The Magnetized Quantum Breathing in Cylindrical Dusty Plasma

Authors: A. Abdikian

Abstract:

A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure.

Keywords: The linear quantum hydrodynamic model, the magnetized quantum breathing mode, the quantum dispersion relation of rotation mode, void structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
1067 Design of the Miniature Maglev Using Hybrid Magnets in Magnetic Levitation System

Authors: Jeong-Min Jo, Young-Jae Han, Chang-Young Lee

Abstract:

Attracting ferromagnetic forces between magnet and reaction rail provide the supporting force in Electromagnetic Suspension. Miniature maglev using permanent magnets and electromagnets is based on the idea to generate the nominal magnetic force by permanent magnets and superimpose the variable magnetic field required for stabilization by currents flowing through control windings in electromagnets. Permanent magnets with a high energy density have lower power losses with regard to supporting force and magnet weight. So the advantage of the maglev using electromagnets and permanent magnets is partially reduced by the power required to feed the remaining onboard supply system so that the overall onboard power is diminished as compared to that of the electromagnet. In this paper we proposed the how to design and control the miniature maglev and confirmed the feasibility of the levitation system using electromagnets and permanent magnets through the manufacturing the miniature maglev

Keywords: Magnetic Levitation system, Maglev, Permanent Magnets, Hybrid Magnet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
1066 Position Vector of a Partially Null Curve Derived from a Vector Differential Equation

Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut, Şuur Nizamoğlu

Abstract:

In this paper, position vector of a partially null unit speed curve with respect to standard frame of Minkowski space-time is studied. First, it is proven that position vector of every partially null unit speed curve satisfies a vector differential equation of fourth order. In terms of solution of the differential equation, position vector of a partially null unit speed curve is expressed.

Keywords: Frenet Equations, Partially Null Curves, Minkowski Space-time, Vector Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
1065 Sliding Mode Position Control for Permanent Magnet Synchronous Motors Based On Passivity Approach

Authors: Jenn-Yih Chen, Bean-Yin Lee, Yuan-Chuan Hsu, Jui-Cheng Lin, Kuang-Chyi Lee

Abstract:

In this paper, a sliding mode control method based on the passivity approach is proposed to control the position of surface-mounted permanent magnet synchronous motors (PMSMs). Firstly, the dynamics of a PMSM was proved to be strictly passive. The position controller with an adaptive law was used to estimate the load torque to eliminate the chattering effects associated with the conventional sliding mode controller. The stability analysis of the overall position control system was carried out by adopting the passivity theorem instead of Lyapunov-type arguments. Finally, experimental results were provided to show that the good position tracking can be obtained, and exhibit robustness in the variations of the motor parameters and load torque disturbances.

Keywords: Adaptive law, passivity theorem, permanent magnet synchronous motor, sliding mode control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
1064 Structural Study of Boron - Nitride Nanotube with Magnetic Resonance (NMR) Parameters Calculation via Density Functional Theory Method (DFT)

Authors: Asadollah Boshra, Ahmad Seif, Mehran Aghaei

Abstract:

A model of (4, 4) single-walled boron-nitride nanotube as a representative of armchair boron-nitride nanotubes studied. At first the structure optimization performed and then Nuclear Magnetic Resonance parameters (NMR) by Density Functional Theory (DFT) method at 11B and 15N nuclei calculated. Resulted parameters evaluation presents electrostatic environment heterogeneity along the nanotube and especially at the ends but the nuclei in a layer feel the same electrostatic environment. All of calculations carried out using Gaussian 98 Software package.

Keywords: Boron-nitride nanotube, Density Functional Theory, Nuclear Magnetic Resonance (NMR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
1063 Simulation of a Boost PFC Converter with Electro Magnetic Interference Filter

Authors: P. Ram Mohan, M. Vijaya Kumar, O. V. Raghava Reddy

Abstract:

This paper deals with the simulation of a Boost Power Factor Correction (PFC) Converter with Electro Magnetic Interference (EMI) Filter. The diode rectifier with output capacitor gives poor power factor. The Boost Converter of PFC Circuit is analyzed and then simulated with diode rectifier. The Boost PFC Converter with EMI Filter is simulated for resistive load. The power factor is improved using the proposed converter.

Keywords: Boost Converter, Power Factor Correction, Electro Magnetic Interference, Diode Rectifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3384
1062 Contrast-Enhanced Magnetic Resonance Angiography in Rats with Gadobenate Dimeglumine at 3T

Authors: Jo-Chi Jao, Yen-Ku Chen, Twei-Shiun Jaw, Po-Chou Chen

Abstract:

This study aimed to investigate the magnetic resonance (MR) signal enhancement ratio (ER) of contrast-enhanced MR angiography (CE-MRA) in normal rats with gadobenate dimeglumine (Gd-BOPTA) using a clinical 3T scanner and an extremity coil. The relaxivities of Gd-BOPTA with saline only and with 4.5% human serum albumin (HSA) were also measured. Compared with Gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA), Gd-BOPTA had higher relaxivities. The maximum ER of aorta (ERa), kidney, liver and muscle with Gd-BOPTA were higher than those with Gd-DTPA. The maximum ERa appeared at 1.2 min and decayed to half at 10 min after Gd-BOPTA injection. This information is helpful for the design of CE-MRA study of rats.

Keywords: Contrast-Enhanced Magnetic Resonance Angiography, Gd-BOPTA, Gd-DTPA, Rat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
1061 Mathematical Modeling of Switching Processes in Magnetically Controlled MEMS Switches

Authors: Sergey M. Karabanov, Dmitry V. Suvorov, Dmitry Yu. Tarabrin

Abstract:

The operating principle of magnetically controlled microelectromechanical system (MEMS) switches is based on controlling the beam movement under the influence of a magnetic field. Currently, there is a MEMS switch design with a flexible ferromagnetic electrode in the form of a fixed-terminal beam, with an electrode fastened on a straight or cranked anchor. The basic performance characteristics of magnetically controlled MEMS switches (service life, sensitivity, contact resistance, fast response) are largely determined by the flexible electrode design. To ensure the stable and controlled motion of the flexible electrode, it is necessary to provide the optimal design of a flexible electrode.

Keywords: MEMS switch, magnetic sensitivity, magnetic concentrator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
1060 Unsteady Flow of an Incompressible Viscous Electrically Conducting Fluid in Tube of Elliptical Cross Section under the Influence of Magnetic Field

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady flow of elastico-viscous electrically conducting fluid through a porous media in a tube of elliptical cross section under the influence of constant pressure gradient and magnetic field has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the transverse magnetic field and porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K), magnetic parameter (m) and elastico-viscosity parameter (β), which depends on the Non- Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, magnetic parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Elliptic cross-section, Porous media, Second order fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
1059 Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution

Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria

Abstract:

We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.

Keywords: Microfluidics, magnetic nanoparticles, continuous production, nanomaterials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
1058 Effect of the Workpiece Position on the Manufacturing Tolerances

Authors: M. Rahou, F. Sebaa, A. Cheikh

Abstract:

Manufacturing tolerancing is intended to determine the intermediate geometrical and dimensional states of the part during its manufacturing process. These manufacturing dimensions also serve to satisfy not only the functional requirements given in the definition drawing, but also the manufacturing constraints, for example geometrical defects of the machine, vibration and the wear of the cutting tool. The choice of positioning has an important influence on the cost and quality of manufacture. To avoid this problem, a two-step approach has been developed. The first step is dedicated to the determination of the optimum position. As for the second step, a study was carried out for the tightening effect on the tolerance interval.

Keywords: Dispersion, tolerance, manufacturing, position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
1057 Evaluation of Best-Fit Probability Distribution for Prediction of Extreme Hydrologic Phenomena

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

The probability distributions are the best method for forecasting of extreme hydrologic phenomena such as rainfall and flood flows. In this research, in order to determine suitable probability distribution for estimating of annual extreme rainfall and flood flows (discharge) series with different return periods, precipitation with 40 and discharge with 58 years time period had been collected from Karkheh River at Iran. After homogeneity and adequacy tests, data have been analyzed by Stormwater Management and Design Aid (SMADA) software and residual sum of squares (R.S.S). The best probability distribution was Log Pearson Type III with R.S.S value (145.91) and value (13.67) for peak discharge and Log Pearson Type III with R.S.S values (141.08) and (8.95) for maximum discharge in Jelogir Majin and Pole Zal stations, respectively. The best distribution for maximum precipitation in Jelogir Majin and Pole Zal stations was Log Pearson Type III distribution with R.S.S values (1.74&1.90) and then Pearson Type III distribution with R.S.S values (1.53&1.69). Overall, the Log Pearson Type III distributions are acceptable distribution types for representing statistics of extreme hydrologic phenomena in Karkheh River at Iran with the Pearson Type III distribution as a potential alternative.

Keywords: Karkheh river, log pearson type III, probability distribution, residual sum of squares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820
1056 Slug Initiation Evaluation in Long Horizontal Channels Experimentally

Authors: P. Adibi, M. R. Ansari, S. Jafari, B. Habibpour, E. Salimi

Abstract:

In this paper, the effect of gas and liquid superficial inlet velocities and for the first time the effect of liquid holdup on slug initiation position are studied experimentally. Empirical correlations are also presented based on the obtained results. The tests are conducted for three liquid holdups in a long horizontal channel with dimensions of 5cm10cm and 36m length. Usl and Usg rated as to 0.11m/s to 0.56m/s and 1.88m/s to 13m/s, respectively. The obtained results show that as αl=0.25, slug initiation position is increasing monotonically with Usl and Usg. During αl=0.50, slug initiation position is almost constant. For αl=0.75, slug initiation position is decreasing monotonically with Usl and Usg. In the case of equal void fraction of phases, generated slugs are weakly (low pressure). However, for the unequal void fraction of phases strong slugs (high pressure) are formed.

Keywords: Liquid holdup, Long horizontal channel, Slug initiation position, Superficial inlet velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
1055 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal

Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen

Abstract:

In this study, we demonstrate a high-resolution refractive index sensor based on a Magnetic Photonic Crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of  Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.

Keywords: Magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
1054 Detection, Tracking and Classification of Vehicles and Aircraft based on Magnetic Sensing Technology

Authors: K. Dimitropoulos, N. Grammalidis, I. Gragopoulos, H. Gao, Th. Heuer, M. Weinmann, S. Voit, C. Stockhammer, U. Hartmann, N. Pavlidou

Abstract:

Existing ground movement surveillance technologies at airports are subjected to limitations due to shadowing effects or multiple reflections. Therefore, there is a strong demand for a new sensing technology, which will be cost effective and will provide detection of non-cooperative targets under any weather conditions. This paper aims to present a new intelligent system, developed within the framework of the EC-funded ISMAEL project, which is based on a new magnetic sensing technology and provides detection, tracking and automatic classification of targets moving on the airport surface. The system is currently being installed at two European airports. Initial experimental results under real airport traffic demonstrate the great potential of the proposed system.

Keywords: Air traffic management, magnetic sensors, multitracking, A-SMGCS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
1053 Formation of (Ga,Mn)N Dilute Magnetic Semiconductor by Manganese Ion Implantation

Authors: N.S. Pradhan, S.K. Dubey, A. D.Yadav, Arvind Singh, D.C. Kothari

Abstract:

Un-doped GaN film of thickness 1.90 mm, grown on sapphire substrate were uniformly implanted with 325 keV Mn+ ions for various fluences varying from 1.75 x 1015 - 2.0 x 1016 ions cm-2 at 3500 C substrate temperature. The structural, morphological and magnetic properties of Mn ion implanted gallium nitride samples were studied using XRD, AFM and SQUID techniques. XRD of the sample implanted with various ion fluences showed the presence of different magnetic phases of Ga3Mn, Ga0.6Mn0.4 and Mn4N. However, the compositions of these phases were found to be depended on the ion fluence. AFM images of non-implanted sample showed micrograph with rms surface roughness 2.17 nm. Whereas samples implanted with the various fluences showed the presence of nano clusters on the surface of GaN. The shape, size and density of the clusters were found to vary with respect to ion fluence. Magnetic moment versus applied field curves of the samples implanted with various fluences exhibit the hysteresis loops. The Curie temperature estimated from zero field cooled and field cooled curves for the samples implanted with the fluence of 1.75 x 1015, 1.5 x 1016 and 2.0 x 1016 ions cm-2 was found to be 309 K, 342 K and 350 K respectively.

Keywords: GaN, Ion implantation, XRD, AFM, SQUID

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
1052 Synthesis of Hard Magnetic Material from Secondary Resources

Authors: M. Bahgat, F. M. Awan, H. A. Hanafy, O. N. Alzeghaibi

Abstract:

Strontium hexaferrite (SrFe12O19; Sr-ferrite) is one of the well-known materials for permanent magnets. In this study, Mtype strontium ferrite was prepared by following the conventional ceramic method from steelmaking by-product. Initial materials; SrCO3 and by-product, were mixed together in the composition of SrFe12O19 in different Sr/Fe ratios. The mixtures of these raw materials were dry-milled for 6h. The blended powder was presintered (i.e. calcination) at 1000°C for different times periods, then cooled down to room temperature. These pre-sintered samples were re-milled in a dry atmosphere for 1h and then fired at different temperatures in atmospheric conditions, and cooled down to room temperature. The produced magnetic powder has a dense hexagonal grain shape structure. The calculated energy product values for the produced samples ranged from 0.3 to 2.4 MGOe.

Keywords: Ceramic route, Hard magnetic materials, Strontium ferrite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322
1051 Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location

Authors: Wittawat Wasusathien, Samran Santalunai, Thanaset Thosdeekoraphat, Chanchai Thongsopa

Abstract:

This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz.

Keywords: Specific absorption rate (SAR), ultra wideband (UWB), coordinates and cancer detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
1050 Study of Two Writing Schemes for a Magnetic Tunnel Junction Based On Spin Orbit Torque

Authors: K. Jabeur, L. D. Buda-Prejbeanu, G. Prenat, G. Di Pendina

Abstract:

MRAM technology provides a combination of fast access time, non-volatility, data retention and endurance. While a growing interest is given to two-terminal Magnetic Tunnel Junctions (MTJ) based on Spin-Transfer Torque (STT) switching as the potential candidate for a universal memory, its reliability is dramatically decreased because of the common writing/reading path. Three-terminal MTJ based on Spin-Orbit Torque (SOT) approach revitalizes the hope of an ideal MRAM. It can overcome the reliability barrier encountered in current two-terminal MTJs by separating the reading and the writing path. In this paper, we study two possible writing schemes for the SOT-MTJ device based on recently fabricated samples. While the first is based on precessional switching, the second requires the presence of permanent magnetic field. Based on an accurate Verilog-A model, we simulate the two writing techniques and we highlight advantages and drawbacks of each one. Using the second technique, pioneering logic circuits based on the three-terminal architecture of the SOT-MTJ described in this work are under development with preliminary attractive results.

Keywords: Spin orbit Torque, Magnetic Tunnel Junction, MRAM, Spintronic, Circuit simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3488
1049 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires

Authors: Musaab Salman Sultan

Abstract:

The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.

Keywords: MOKE magnetometry, MR measurements, OOMMF package, micro-magnetic simulations, ferromagnetic nanowires, surface magnetic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
1048 Analytical and Experimental Study on the Effect of Air-Core Coil Parameters on Magnetic Force Used in a Linear Optical Scanner

Authors: Loke Kean Koay, Horizon Gitano-Briggs, Mani Maran Ratnam

Abstract:

Today air-core coils (ACC) are a viable alternative to ferrite-core coils in a range of applications due to their low induction effect. An analytical study was carried out and the results were used as a guide to understand the relationship between the magnet-coil distance and the resulting attractive magnetic force. Four different ACC models were fabricated for experimental study. The variation in the models included the dimensions, the number of coil turns and the current supply to the coil. Comparison between the analytical and experimental results for all the models shows an average discrepancy of less than 10%. An optimized ACC design was selected for the scanner which can provide maximum magnetic force.

Keywords: Air-Core Coils, Electromagnetic, Linear Optical Scanner

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
1047 Nanoparticles-Protein Hybrid Based Magnetic Liposome

Authors: Amlan Kumar Das, Avinash Marwal, Vikram Pareek

Abstract:

Liposome plays an important role in medical and pharmaceutical science as e.g. nano scale drug carriers. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment. Magnet-driven liposome used for the targeted delivery of drugs to organs and tissues. These liposome preparations contain encapsulated drug components and finely dispersed magnetic particles. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment that are generated in vitro. These are useful in terms of biocompatibility, biodegradability, and low toxicity, and can control biodistribution by changing the size, lipid composition, and physical characteristics. Furthermore, liposomes can entrap both hydrophobic and hydrophilic drugs and are able to continuously release the entrapped substrate, thus being useful drug carriers. Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magneticor paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI). The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology. Green-synthesized magnetite nanoparticles-protein hybrid has been produced by treating Iron (III) / Iron (II) chloride with the leaf extract of Datura inoxia. The phytochemicals present in the leaf extracts act as a reducing as well stabilizing agents preventing agglomeration, which include flavonoids, phenolic compounds, cardiac glycosides, proteins and sugars. The magnetite nanoparticles-protein hybrid has been trapped inside the aqueous core of the liposome prepared by reversed phase evaporation (REV) method using oleic and linoleic acid which has been shown to be driven under magnetic field confirming the formation magnetic liposome (ML). Chemical characterization of stealth magnetic liposome has been performed by breaking the liposome and release of magnetic nanoparticles. The presence iron has been confirmed by colour complex formation with KSCN and UV-Vis study using spectrophotometer Cary 60, Agilent. This magnet driven liposome using nanoparticles-protein hybrid can be a smart vesicles for the targeted drug delivery.

Keywords: Nanoparticles-Protein Hybrid, Magnetic Liposome.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2987
1046 Impedance of an Encircling Coil due to a Cylindrical Tube with Varying Properties

Authors: Valentina Koliskina

Abstract:

Change in impedance of an encircling coil is obtained in the present paper for the case where the electric conductivity and magnetic permeability of a metal cylindrical tube depend on the radial coordinate. The system of equations for the vector potential is solved by means of the Fourier cosine transform. The solution is expressed in terms of improper integral containing modified Bessel functions of complex order.

Keywords: Eddy currents, magnetic permeability, Besselfunctions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
1045 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.

Keywords: Adomian’s Decomposition Method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743