WASET
	%0 Journal Article
	%A Amlan Kumar Das and  Avinash Marwal and  Vikram Pareek
	%D 2015
	%J International Journal of Chemical and Molecular Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 98, 2015
	%T Nanoparticles-Protein Hybrid Based Magnetic Liposome
	%U https://publications.waset.org/pdf/10000283
	%V 98
	%X Liposome plays an important role in medical and
pharmaceutical science as e.g. nano scale drug carriers. Liposomes
are vesicles of varying size consisting of a spherical lipid bilayer and
an aqueous inner compartment. Magnet-driven liposome used for the
targeted delivery of drugs to organs and tissues. These liposome
preparations contain encapsulated drug components and finely
dispersed magnetic particles.
Liposomes are vesicles of varying size consisting of a spherical
lipid bilayer and an aqueous inner compartment that are generated in
vitro. These are useful in terms of biocompatibility, biodegradability,
and low toxicity, and can control biodistribution by changing the size,
lipid composition, and physical characteristics. Furthermore,
liposomes can entrap both hydrophobic and hydrophilic drugs and are
able to continuously release the entrapped substrate, thus being useful
drug carriers. Magnetic liposomes (MLs) are phospholipid vesicles
that encapsulate magneticor paramagnetic nanoparticles. They are
applied as contrast agents for magnetic resonance imaging (MRI).
The biological synthesis of nanoparticles using plant extracts plays
an important role in the field of nanotechnology. Green-synthesized
magnetite nanoparticles-protein hybrid has been produced by treating
Iron (III) / Iron (II) chloride with the leaf extract of Datura inoxia.
The phytochemicals present in the leaf extracts act as a reducing as
well stabilizing agents preventing agglomeration, which include
flavonoids, phenolic compounds, cardiac glycosides, proteins and
sugars.
The magnetite nanoparticles-protein hybrid has been trapped
inside the aqueous core of the liposome prepared by reversed phase
evaporation (REV) method using oleic and linoleic acid which has
been shown to be driven under magnetic field confirming the
formation magnetic liposome (ML). Chemical characterization of
stealth magnetic liposome has been performed by breaking the
liposome and release of magnetic nanoparticles. The presence iron
has been confirmed by colour complex formation with KSCN and
UV-Vis study using spectrophotometer Cary 60, Agilent.
This magnet driven liposome using nanoparticles-protein hybrid
can be a smart vesicles for the targeted drug delivery.

	%P 230 - 233