Structural Study of Boron - Nitride Nanotube with Magnetic Resonance (NMR) Parameters Calculation via Density Functional Theory Method (DFT)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Structural Study of Boron - Nitride Nanotube with Magnetic Resonance (NMR) Parameters Calculation via Density Functional Theory Method (DFT)

Authors: Asadollah Boshra, Ahmad Seif, Mehran Aghaei

Abstract:

A model of (4, 4) single-walled boron-nitride nanotube as a representative of armchair boron-nitride nanotubes studied. At first the structure optimization performed and then Nuclear Magnetic Resonance parameters (NMR) by Density Functional Theory (DFT) method at 11B and 15N nuclei calculated. Resulted parameters evaluation presents electrostatic environment heterogeneity along the nanotube and especially at the ends but the nuclei in a layer feel the same electrostatic environment. All of calculations carried out using Gaussian 98 Software package.

Keywords: Boron-nitride nanotube, Density Functional Theory, Nuclear Magnetic Resonance (NMR).

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1062450

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926

References:


[1] Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354 (6348):56-8.
[2] Tang ZK, Zhang LY, Wang N. Superconductivity in 4 A0 singlewalled carbon nanotubes. Science 2001;292(5526):2462-5.
[3] Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature 1998;393(6680):49-52.
[4] Frank S, Poncharal P, Wang ZL. Carbon nanotube quantum resistors. Science 1998;280(5370):1744-6.
[5] Pradhan BK, Kyotani T, Tomita A. Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes. Chem Commun 1999; 14:1317-8.
[6] Ajayan PM. Nanotubes from carbon. Chem Rev 1999;99:1787-99.
[7] Li WZ, Wen JG, Sennett M, Ren ZF. Clean double-walled carbon nanotubes synthesized by CVD. Chem Phys Lett 2003;368(3-4): 299- 306.
[8] Deepak FL, John NS, Govindaraj A, Kulkarni GU, Rao CNR. Nature and electronic properties of Y-junctions in CNTs and Ndoped CNTs obtained by the pyrolysis of organometallic precursors. Chem Phys Lett 2005;411(4-6):468-73.
[9] Wu XC, Tao YR, Lu YN, Dong L, Hu Z. High-pressure pyrolysis of melamine route to nitrogen-doped conical hollow and bamboo-like carbon nanotubes. Diam Relat Mater 2006;15(1):164-70.
[10] A. Rubio, J.L. Corkill, M.L. Cohen, Phys. Rev. B 49 (1994) 5081.
[11] X. Blase', A.G. Rubio, S. Louie, M.L. Cohen, Eruophys. Lett. 28 (1994) 335.
[12] N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269 (1995) 966.
[13] (a) T. Hirano, T. Oku, K. Sugannuma, Diamond Relat. Mater. 9 (2000) 625; (b) M. Kuno, T. Oku, K. Sugannuma, Diamond Relat. Mater. 10 (2001) 1231.
[14] (a) O.R. Lourie, C.R. Jones, B.M. Bartlett, P.C. Gibbons, R.S. Ruoff, W.E. Buhro, Chem. Mater. 12 (2000) 1808; (b) R. Ma, Y. Bando, T. Sato, Chem. Phys. Lett. 337 (2001) 61.
[15] (a) W. Han, Y. Bando, K. Kurashima, T. Sato, Appl. Phys. Lett. 73 (1998) 3085; (b) D. Golberg, Y. Bando, W. Han, K. Kurashima, T. Sato, Chem. Phys. Lett. 308 (1999) 337; (c) D. Golberg, Y. Bando, K. Kurashima, T. Sato, Chem. Phys. Lett. 323 (2000) 185.
[16] (a) D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, H. Yusa, Appl. Phys. Lett. 69 (1996) 2045; (b) D.P. Yu, X.S. Sun, C.S. Lee, I. Bello, S.T. Lee, H.D. Gu, K.M. Leung, G.W. Zhou, Z.F. Dong, Z. Zhang, Appl. Phys. Lett. 72 (1998) 1966.
[17] A. Rubio, Y. Miyamoto, X. Blase' , M.L. Cohen, S.G. Louie, Phys. Rev. B 53 (1996) 4023.
[18] P. Zhang, W.H. Crespi, Phys. Rev. B 62 (2000) 11050.
[19] P.W. Fowler, K.M. Rogers, G. Seifert, M. Terrones, H. Terrones, Chem. Phys. Lett. 299 (1999) 359.
[20] K.M. Rogers, P.W. Fowler, G. Seifert, Chem. Phys. Lett. 332 (2000) 45.
[21] S- . Erkoc- , J. Mol. Struct. (Theochem) 542 (2001) 89.
[22] Y.H. Kim, K.J. Chang, S.G. Louie, Phys. Rev. B 63 (2001) 205408.
[23] Y.H. Kim, H.S. Sim, K.J. Chang, Curr. Appl. Phys. 1 (2001) 39.
[24] L. Vaccarini, C. Goze, L. Henrard, E. Hernandez, P. Bernier, A. Rubio, Carbon 38 (2000) 1681.
[25] H.F. Bettinger, T. Dumitrica, G.E. Scuseria, B.I. Yakobson, Phys. Rev. B 65 (2002) 041406.
[26] T. Dumitrica, H.F. Bettinger, G.E. Scuseria, B.I. Yakobson, Phys. Rev. B 68 (2003) 085412.
[27] T.M. Schmidt, R.J. Baierle, P. Piquini, A. Fazzio, Phys. Rev. B 67 (2003) 113407.
[28] R. Krishnan, J. S. Binkley, R. Seeger, and J.A. Pople, J. Chem. Phys. 72, 650 (1980).
[29] T.Clark, J. Chandrasekhar, and P.R. v. Schleyer, J. Comp. Chem. 4, 294 (1983).
[30] M. Schindler and W. Kutzelnigg, J. Am. Chem. Soc.105, 1360 (1983).
[31] U. Fleischer, W. Kutzelnigg, A. Bleiber, and J. Sauer,J. Am. Chem. Soc. 115, 7833 (1993).