Search results for: foliar boric acid application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3885

Search results for: foliar boric acid application

3855 The Effect of Solution Density on the Synthesis of Magnesium Borate from Boron-Gypsum

Authors: N. Tugrul, E. Sariburun, F. T. Senberber, A. S. Kipcak, E. Moroydor Derun, S. Piskin

Abstract:

Boron-gypsum is a waste which occurs in the boric acid production process. In this study, the boron content of this waste is evaluated for the use in synthesis of magnesium borates and such evaluation of this kind of waste is useful more than storage or disposal. Magnesium borates, which are a sub-class of boron minerals, are useful additive materials for the industries due to their remarkable thermal and mechanical properties. Magnesium borates were obtained hydrothermally at different temperatures. Novelty of this study is the search of the solution density effects to magnesium borate synthesis process for the increasing the possibility of borongypsum usage as a raw material. After the synthesis process, products are subjected to XRD and FT-IR to identify and characterize their crystal structure, respectively.

Keywords: Boron-gypsum, hydrothermal synthesis, magnesium borate, solution density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
3854 The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation

Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying

Abstract:

Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N2 adsorption/desorption, H2-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al2O3 can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al2O3 were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol.

Keywords: Acetic acid, hydrogenation, PtSn, operating condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
3853 A Comparison of Dilute Sulfuric and Phosphoric Acid Pretreatments in Biofuel Production from Corncobs

Authors: Jirakarn Nantapipat, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Abstract:

Biofuels, like biobutanol, have been recognized for being renewable and sustainable fuels which can be produced from lignocellulosic biomass. To convert lignocellulosic biomass to biofuel, pretreatment process is an important step to remove hemicelluloses and lignin to improve enzymatic hydrolysis. Dilute acid pretreatment has been successful developed for pretreatment of corncobs and the optimum conditions of dilute sulfuric and phosphoric acid pretreatment were obtained at 120 °C for 5 min with 15:1 liquid to solid ratio and 140 °C for 10 min with 10:1 liquid to solid ratio, respectively. The result shows that both of acid pretreatments gave the content of total sugar approximately 34–35 g/l. In case of inhibitor content (furfural), phosphoric acid pretreatment gives higher than sulfuric acid pretreatment. Characterizations of corncobs after pretreatment indicate that both of acid pretreatments can improve enzymatic accessibility and the better results present in corncobs pretreated with sulfuric acid in term of surface area, crystallinity, and composition analysis.

Keywords: Corncobs, Pretreatment, Sulfuric acid, Phosphoric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3376
3852 Optimization of Diluted Organic Acid Pretreatment on Rice Straw Using Response Surface Methodology

Authors: Rotchanaphan Hengaroonprasan, Malinee Sriariyanun, Prapakorn Tantayotai, Supacharee Roddecha, Kraipat Cheenkachorn

Abstract:

Lignocellolusic material is a substance that is resistant to be degraded by microorganisms or hydrolysis enzymes. To be used as materials for biofuel production, it needs pretreatment process to improve efficiency of hydrolysis. In this work, chemical pretreatments on rice straw using three diluted organic acids, including acetic acid, citric acid, oxalic acid, were optimized. Using Response Surface Methodology (RSM), the effect of three pretreatment parameters, acid concentration, treatment time, and reaction temperature, on pretreatment efficiency were statistically evaluated. The results indicated that dilute oxalic acid pretreatment led to the highest enhancement of enzymatic saccharification by commercial cellulase and yielded sugar up to 10.67 mg/ml when using 5.04% oxalic acid at 137.11 oC for 30.01 min. Compared to other acid pretreatment by acetic acid, citric acid, and hydrochloric acid, the maximum sugar yields are 7.07, 6.30, and 8.53 mg/ml, respectively. Here, it was demonstrated that organic acids can be used for pretreatment of lignocellulosic materials to enhance of hydrolysis process, which could be integrated to other applications for various biorefinery processes. 

Keywords: Lignocellolusic biomass, pretreatment, organic acid response surface methodology, biorefinery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
3851 Synthesis and Application of Tamarind Hydroxypropane Sulphonic Acid Resin for Removal of Heavy Metal Ions from Industrial Wastewater

Authors: Aresh Vikram Singh, Sarika Nagar

Abstract:

The tamarind based resin containing hydroxypropane sulphonic acid groups has been synthesized and their adsorption behavior for heavy metal ions has been investigated using batch and column experiments. The hydroxypropane sulphonic acid group has been incorporated onto tamarind by a modified Porath's method of functionalisation of polysaccharides. The tamarind hydroxypropane sulphonic acid (THPSA) resin can selectively remove of heavy metal ions, which are contained in industrial wastewater. The THPSA resin was characterized by FTIR and thermogravimetric analysis. The effects of various adsorption conditions, such as pH, treatment time and adsorbent dose were also investigated. The optimum adsorption condition was found at pH 6, 120 minutes of equilibrium time and 0.1 gram of resin dose. The orders of distribution coefficient values were determined.

Keywords: Distribution coefficient, industrial wastewater, polysaccharides, tamarind hydroxypropane sulphonic acid resin, thermogravimetric analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912
3850 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel

Authors: Supriyono, Sumardiyono, Rendy J. Pramono

Abstract:

Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.

Keywords: Antioxidant, biodiesel, decomposition, oxidation, tocopherol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
3849 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel

Authors: Supriyono, Sumardiyono, Rendy J. Pramono

Abstract:

Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.

Keywords: Antioxidant, biodiesel, decomposition, oxidation, tocopherol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
3848 Industrial Production and Clinical Application of L-Asparaginase: A Chemotherapeutic Agent

Authors: Soni Yadav, Sitansu Kumar Verma, Jitendra Singh, Ajay Kumar

Abstract:

This article comprises detail information about L-asparaginase, encompassing topic such as various sources of L-asparaginase, mechanism and properties of L-asparaginase. Also describe the production, cultivation and purification of L-asparaginase along with information about the application of L-asparaginase. L-asparaginase catalyzes the conversion reaction to convert asparagine to aspartic acid and ammonia. Asparagine is a nutritional requirement for both normal and tumor cell. Present scenario has found that L-asparaginase has been found to be a best anti tumor or antileukemic agent. In the recent years this enzyme gained application in the field of clinical research pharmacologic and food industry. It has been characterized based on the enzyme assay principle hydrolyzing L-asparagine into L-aspartic acid and ammonia. It has been observed that eukaryotic microorganisms such as yeast and filamentous fungi have a potential for L-asparaginase production. L-asparaginase has been and is still one of the most lengthily studied therapeutic enzymes by scientist and researchers worldwide.

Keywords: L-asparaginase, antitumor, solid state fermentation, chemotherapeutic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6870
3847 Utilization of Sugarcane Bagasses for Lactic Acid Production by acid Hydrolysis and Fermentation using Lactobacillus sp

Authors: Woranart Jonglertjunya, Nattawadee Pranrawang, Nuanyai Phookongka, Thanasak Sridangtip, Watthana Sawedrungreang, Chularat Krongtaew

Abstract:

Sugarcane bagasses are one of the most extensively used agricultural residues. Using acid hydrolysis and fermentation, conversion of sugarcane bagasses to lactic acid was technically and economically feasible. This research was concerned with the solubility of lignin in ammonium hydroxide, acid hydrolysis and lactic acid fermentation by Lactococcus lactis, Lactobacillus delbrueckii, Lactobacillus plantarum, and Lactobacillus casei. The lignin extraction results for different ammonium hydroxide concentrations showed that 10 % (v/v) NH4OH was favorable to lignin dissolution. Acid hydrolysis can be enhanced with increasing acid concentration and reaction temperature. The optimum glucose and xylose concentrations occurred at 121 ○C for 1 hour hydrolysis time in 10% sulphuric acid solution were 32 and 11 g/l, respectively. In order to investigate the significance of medium composition on lactic acid production, experiments were undertaken whereby a culture of Lactococcus lactis was grown under various glucose, peptone, yeast extract and xylose concentrations. The optimum medium was composed of 5 g/l glucose, 2.5 g/l xylose, 10 g/l peptone and 5 g/l yeast extract. Lactococcus lactis represents the most efficient for lactic acid production amongst those considered. The lactic acid fermentation by Lactococcus lactis after 72 hours gave the highest yield of 1.4 (g lactic acid per g reducing sugar).

Keywords: sugarcane bagasses, acid hydrolysis, lactic acid, fermentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3475
3846 Some Aspects of Study the Leaching and Acid Corrosion of Concrete

Authors: Alena Sicakova, Adriana Estokova

Abstract:

Although properly made concrete is inherently a durable material, there are many physical and chemical forces in the environment which can contribute to its deterioration. This paper deals with two aspects of concrete durability in chemical aggressive environment: degradation effect of particular aggressive exposure and role of particular mineral additives. Results of the study of leaching and acid corrosion processes in samples prepared with specific dosage of microsilica and zeolite are given in the paper.

Corrosion progress after 60-day exposition is manifested by increasing rate of both Ca and Si release, what is identified by XRF method. Kind and dosage of additions used in experiment was found to be helpful for stabilization of concrete microstructure.The lowest concentration of mean elements in leachates was observed for mixture V1 (microsilica only) unlike the V2 (microsilica + zeolite). It is surprising in the terms of recommendations of zeolite application for acid exposure. Using microsilica only seems to be more effective.

Keywords: Sustainability, durability, concrete, acid corrosion, leaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
3845 Hydrolytic Properties of Ellagic Acid in Commercial Pomegranate Juices

Authors: Sibel Uzuner, Jale Acar

Abstract:

Pomegranate and pomegranate juices (PJs) have taken great attention for their health benefits in the last years. As there is an increasing concern about potential health benefits of ellagic acid, it is of great interest to evaluate alterations in ellagic acid concentration of commercial PJs. The purpose of this study is to analyze total phenolic, free and total ellagic acid content of six commercial PJs sold in Turkish markets using HPLC. The results showed that some commercial PJs had markedly high total phenolic and ellagic acid content. Total phenolic substances of commercial PJs range from 796.71 to 4608.91 mg GAE/l. Free amount of ellagic acid in commercial PJs range from 27.64 to 111.78 mg/l. Samples are hydrolyzed with concentrated HCl at 93oC for 2 and 24 hour and influences of temperature and time parameters on hydrolization were investigated. Thermal processing for pasteurization increased ellagic acid via ellagitannins hydrolysis.

Keywords: Ellagic acid, ellagitannin, pomegranate juice, total phenolic compounds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
3844 Dissolution Leaching Kinetics of Ulexite in Sodium Dihydrogen Phosphate Solutions

Authors: Emine Teke, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of the present study was to investigate the dissolution kinetics of ulexite in sodium dihydrogen phosphate in a mechanical agitation system and also to declare an alternative reactant to produce the boric acid. Reaction temperature, concentration of sodium dihydrogen phosphate, stirring speed, solid-liquid ratio, and ulexite particle size were selected as parameters. The experimental results were successfully correlated by using linear regression and a statistical program. Dissolution curves were evaluated in order to test the shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase in the dissolution rate of ulexite. The activation energy was found to be 36.4 kJ/mol. The leaching of ulexite was controlled by diffusion through the ash (or product) layer.

Keywords: Sodium dihydrogen phosphate, leaching kinetics, ulexite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
3843 Analysis of the Supramolecular Complex of Kinetin with Glycyrrhizic Acid Using the Chromatography Mass Spectrometry Method

Authors: B. Y. Matmuratov, S. D. Madrakhimova. R. S. Esanov. A. D. Matchanov

Abstract:

Supramolecular complexes of glycyrrhizic acid with kinetin in various molar ratios were obtained, physico-chemical parameters and spectral properties of the resulting complexes were studied (UV, IR, mass spectrometry.

Keywords: Monoammonium salt of glycyrrhizic acid, glycyrrhizic acid, supramolecular complex, isomolar series, IR spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276
3842 Solid-State Bioconversion of Pineapple Residues into Kojic Acid by Aspergillus flavus: A Prospective Study

Authors: S. Nurashikin, E. Z. Rusley, A. Husaini

Abstract:

Kojic acid is an organic acid that is widely used as an ingredient for dermatological products, precursor for flavor enhancer and also as anti-inflammatory drug. The present study was undertaken to test the feasibility of pineapple residues as substrate for kojic acid production by Aspergillus flavus Link 44-1 via solid-state fermentation. The effect of initial moisture content, pH and incubation time on kojic acid fermentation was investigated. The best initial moisture content for kojic acid production from pineapple residues was observed at 70% (v/w) whereas initial culture pH 2.5 was identified to give high production of kojic acid. The optimal range of incubation time was identified between 8 and 14 days of incubation which corresponded to highest range of kojic acid produced. The results from this study pronounce the promising usability of pineapple residues as alternative substrate for kojic acid production by A. flavus Link 44-1.

Keywords: Aspergillus flavus, kojic acid, pineapple residues, solid state fermentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
3841 Growth Behaviors, Thermostable Direct Hemolysin Secretion and Fatty Acid Profiles of Acid-adapted and Non-adapted Vibrio parahaemolyticus

Authors: Ming-Lun Chiang, Chieh Wu, Ming-Ju Chen

Abstract:

Three strains of Vibrio parahaemolyticus (690, BCRC 13023 and BCRC 13025) implicated in food poisoning outbreaks in Taiwan were subjected to acid adaptation at pH 5.5 for 90 min. The growth behaviors of acid-adapted and non-adapted V. parahaemolyticus in the media supplemented with various nitrogen and carbon sources were investigated. The effects of acid adaptation on the thermostable direct hemolysin (TDH) secretion and fatty acid profiles of V. parahaemolyticus were also examined. Results showed that acid-adapted and non-adapted V. parahaemolyticus 690, BCRC 13023 and BCRC 13025 grew similarly in TSB-3% NaCl and basal media supplemented with various carbon and nitrogen sources during incubation period. Higher TDH secretion was noted with V. parahaemolyticus 690 among the three strains. However, acid-adapted strains produced less amounts of TDH than non-adapted strains when they were grown in TSB-3% NaCl. Additionally, acid adaptation increased the ratio of SFA/USFA in cells of V. parahaemolyticus strains.

Keywords: Vibrio parahaemolyticus, acid adaptation, thermostable direct hemolysin, fatty acid profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
3840 Biocompatible Ionic Liquids in Liquid – Liquid Extraction of Lactic Acid: A Comparative Study

Authors: Konstantza Tonova, Ivan Svinyarov, Milen G. Bogdanov

Abstract:

Ionic liquids consisting of a phosphonium cationic moiety and a saccharinate anion are synthesized and compared with their precursors, phosphonium chlorides, in reference to their extraction efficiency towards L-lactic acid. On the base of measurements of the acid and the water partitioning in the equilibrium biphasic systems, the molar ratios between acid, water and ionic liquid are estimated which allows to deduce the lactic acid extractive pathway. The effect of a salting-out addition that strengthens hydrophobicity in both phases is studied in view to reveal the best biphasic system with respect to IL low toxicity and high extraction efficiency.

Keywords: Biphasic system, Extraction, Ionic liquids, Lactic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674
3839 Growth Effects of Caffeic Acid and Thioglycolic Acid Modified Chitosans in U937 Cells

Authors: Aytekin A.O., Morimura S.

Abstract:

Chitosan is a biopolymer composed of glucosamine and N-acetyl glucosamine. Solubility and viscosity pose problems in some applications. These problems can be overcome with unique modifications. In this study, firstly, chitosan was modified by caffeic acid and thioglycolic acid, separately. Then, growing effects of these modified polymers was observed in U937 cell line. Caffeic acid is a phenolic compound and its modifications act carcinogenic inhibitors in drugs. Thiolated chitosans are commonly being used for drugdelivery systems in various routes, because of enhancing mucoadhesiveness property. U937 cell line was used model cell for leukaemia. Modifications were achieved by 1 – 15 % binding range. Increasing binding ratios showed higher radical-scavenging activity and reducing cell growth, in compared to native chitosan. Caffeic acid modifications showed higher radical-scavenging activity than thiolated chitosans at the same concentrations. Caffeic acid and thioglycolic acid modifications inhibited growth of U937, effectively.

Keywords: Chitosan, U937 cell, caffeic acid, thioglycolic acid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
3838 The Effects of Yield and Yield Components of Some Quality Increase Applications on Ismailoglu Grape Type in Turkey

Authors: Yaşar Önal, Aydın Akın

Abstract:

This study was conducted Ismailoglu grape type (Vitis vinifera L.) and its vine which was aged 15 was grown on its own root in a vegetation period of 2013 in Nevşehir province in Turkey. In this research, it was investigated whether the applications of Control (C), 1/3 cluster tip reduction (1/3 CTR), shoot tip reduction (STR), 1/3 CTR + STR, TKI-HUMAS (TKI-HM) (Soil) (S), TKIHM (Foliar) (F), TKI-HM (S + F), 1/3 CTR + TKI-HM (S), 1/3 CTR + TKI-HM (F), 1/3 CTR + TKI-HM (S+F), STR + TKI-HM (S), STR + TKI-HM (F), STR + TKI-HM (S + F), 1/3 CTR + STR+TKI-HM (S), 1/3 CTR + STR + TKI-HM (F), 1/3 CTR + STR + TKI-HM (S + F) on yield and yield components of Ismailoglu grape type. The results were obtained as the highest fresh grape yield (16.15 kg/vine) with TKI-HM (S), as the highest cluster weight (652.39 g) with 1/3 CTR + STR, as the highest 100 berry weight (419.07 g) with 1/3 CTR + STR + TKI-HM (F), as the highest maturity index (44.06) with 1/3 CTR, as the highest must yield (810.00 ml) with STR + TKI-HM (F), as the highest intensity of L* color (42.04) with TKIHM (S + F), as the highest intensity of a* color (2.60) with 1/3 CTR + TKI-HM (S), as the highest intensity of b* color (7.16) with 1/3 CTR + TKI-HM (S) applications. To increase the fresh grape yield of Ismailoglu grape type can be recommended TKI-HM (S) application.

Keywords: 1/3 cluster tip reduction, shoot tip reduction, TKIHumas application, yield and yield Components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
3837 Effect of Acid Adaptation on the Survival of Three Vibrio parahaemolyticus Strains under Simulated Gastric Condition and their Protein Expression Profiles

Authors: Ming-Lun Chiang, Hsi-Chia Chen, Chieh Wu, Yu-Ting Tseng, Ming-Ju Chen

Abstract:

In this study, three strains of Vibrio parahaemolyticus (690, BCRC 13023 and BCRC 13025) were subjected to acid adaptation at pH 5.5 for 90 min. The survival of acid-adapted and non-adapted V. parahaemolyticus strains under simulated gastric condition and their protein expression profiles were investigated. Results showed that acid adaptation increased the survival of the test V. parahaemolyticus strains after exposure to simulated gastric juice (pH 3). Additionally, acid adaptation also affected the protein expression in these V. parahaemolyticus strains. Nine proteins, identified as atpA, atpB, DnaK, GroEL, OmpU, enolase, fructose-bisphosphate aldolase, phosphoglycerate kinase and triosephosphate isomerase, were induced by acid adaptation in two or three of the test strains. These acid-adaptive proteins may play important regulatory roles in the acid tolerance response (ATR) of V. parahaemolyticus.

Keywords: Acid adaptation, protein expression, simulated gastric juice, Vibrio parahaemolyticus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
3836 Screening and Identification of Microorganisms – Potential Producers of Arachidonic Acid

Authors: A. V. Goncharova, T. A. Karpenyuk, Y. S. Tsurkan, R. U. Beisembaeva, A. M. Kalbaeva, T. D. Mukasheva, L. V. Ignatova

Abstract:

Microorganisms isolated from water and soil of Kazakhstan to identify potential high-effective producers of the arachidonic acid, exhibiting a wide range of physiological activity and having practical applications were screened. Based on the results of two independent tests (the test on the sensitivity of the growth processes of microorganisms to acetylsalicylic acid - an irreversible inhibitor of PGH-synthase involved in the metabolism of arachidonic acid and its derivatives, the test for inhibition of peroxidase activity of membrane-bounding fraction of PGH - synthase by acetylsalicylic acid) were selected microbial cultures which are potential highproducer of arachidonic acid. They are characterized by a stable strong growth in the laboratory conditions. Identification of microorganism cultures based on morphological, physiological, biochemical and molecular genetic characteristics was performed.

Keywords: Arachidonic acid, aspirin-sensitive culture, bacteria, producers, screening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
3835 Synthesis and Application of an Organic Dye in Nanostructure Solar Cells Device

Authors: M. Hoseinnezhad, K. Gharanjig

Abstract:

Two organic dyes comprising carbazole as the electron donors and cyanoacetic acid moieties as the electron acceptors were synthesized. The organic dye was prepared by standard reaction from carbazole as the starting material. To this end, carbazole was reacted with bromobenzene and further oxidation and reacted with cyanoacetic acid. The obtained organic dye was purified and characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1HNMR), carbon nuclear magnetic resonance (13CNMR) and elemental analysis. The influence of heteroatom on carbazole donors and cyno substitution on the acid acceptor is evidenced by spectral and electrochemical photovoltaic experiments. Finally, light fastness properties for organic dye were investigated.

Keywords: Dye-sensitized solar cells, Indoline dye, nanostructure, oxidation potential, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
3834 Improving the Dissolution Rate of Folic Acid via the Antisolvent Vapour Precipitation

Authors: J. Y. Tan, L. C. Lum, M. G. Lee, S. Mansouri, K. Hapgood, X. D. Chen, M. W. Woo

Abstract:

Folic acid (FA) is known to be an important supplement to prevent neural tube defect (NTD) in pregnant women. Similar to some commercial formulations, sodium bicarbonate solution is used as a solvent for FA. This work uses the antisolvent vapour precipitation (AVP), incorporating ethanol vapour as the convective drying medium in place of air to produce branch-like micro-structure FA particles. Interestingly, the dissolution rate of the resultant particle is 2-3 times better than the particle produce from conventional air drying due to the higher surface area of particles produced. The higher dissolution rate could possibly improve the delivery and absorption of FA in human body. This application could potentially be extended to other commercial products, particularly in less soluble drugs to improve its solubility.

Keywords: Absorption, antisolvent vapour precipitation, dissolution rate, folic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434
3833 Characterization of Penicillin V Acid and Its Related Compounds by HPLC

Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul

Abstract:

Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.

Keywords: Penicillin V acid, characterization, related substances, HPLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
3832 Proteomic Analysis of Tumor Tissue after Treatment with Ascorbic Acid

Authors: Seyeon Park, Mi Jang

Abstract:

Tumor cells have an invasive and metastatic phenotype that is the main cause of death for cancer patients. Tumor establishment and penetration consists of a series of complex processes involving multiple changes in gene expression. In this study, intraperitoneal administration of a high concentration of ascorbic acid inhibited tumor establishment and decreased tumor mass in BALB/C mice implanted with S-180 sarcoma cancer cells. To identify proteins involved in the ascorbic acid-mediated inhibition of tumor progression, changes in the tumor proteome associated with ascorbic acid treatment of BALB/C mice implanted with S-180 were investigated using two-dimensional gel electrophoresis and mass spectrometry. Twenty protein spots were identified whose expression was different between control and ascorbic acid treatment groups.

Keywords: Ascorbic acid, Proteomic analysis, S-180 implantedBALB/C mouse

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
3831 Effect of Different Lactic Acid Bacteria on Phytic Acid Content and Quality of whole Wheat Toast Bread

Authors: Z. Didar, A. Pourfarzad, M. H. Haddad Khodaparast

Abstract:

Nowadays, consumption of whole flours and flours with high extraction rate is recommended, because of their high amount of fibers, vitamins and minerals. Despite nutritional benefits of whole flour, concentration of some undesirable components such as phytic acid is higher than white flour. In this study, effect of several lactic acid bacteria sourdough on Toast bread is investigated. Sourdough from lactic acid bacteria (Lb. plantarum, Lb. reuteri) with different dough yield (250 and 300) is made and incubated at 30°C for 20 hour, then added to dough in the ratio of 10, 20 and 30% replacement. Breads that supplemented with Lb. plantarum sourdough had lower phytic acid. Higher replacement of sourdough and higher DY cause higher decrease in phytic acid content. Sourdough from Lb. plantarum, DY = 300 and 30% replacement cause the highest decrease in phytic acid content (49.63 mg/100g). As indicated by panelists, Lb. reuteri sourdough can present the greatest effect on overall quality score of the breads. DY reduction cause a decrease in bread quality score. Sensory score of Toast bread is 81.71 in the samples that treated with Lb. reuteri sourdough with DY = 250 and 20% replacement.

Keywords: Phytic Acid, Sourdough, Toast Bread, Whole Wheat Flour, Lactic Acid Bacteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2899
3830 Biologically Active Caffeic Acid-Derived Biopolymer

Authors: V. Barbakadze, L. Gogilashvili, L. Amiranashvili, M. Merlani, K. Mulkijanyan

Abstract:

The high-molecular water-soluble preparations from several species of two genera (Symphytum and Anchusa) of Boraginaceae family Symphytum asperum, S. caucasicum, S.officinale and Anchusa italica were isolated. According to IR, 13C and 1H NMR, APT, 1D NOE, 2D heteronuclear 1H/13C HSQC and 2D DOSY experiments, the main chemical constituent of these preparations was found to be caffeic acid-derived polyether, namely poly[3-(3,4-dihydroxyphenyl)glyceric acid] (PDPGA) or poly[oxy-1- carboxy-2-(3,4-dihydroxyphenyl)ethylene]. Most carboxylic groups of this caffeic acid-derived polymer of A. italica are methylated.

Keywords: Anchusa, poly[3-(3, 4-dihydroxyphenyl)glyceric acid], poly[oxy-1-carboxy-2-(3, 4-dihydroxyphenyl)ethylene], Symphytum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
3829 The Effect of Waste Magnesium to Boric Acid Ratio in Hydrothermal Magnesium Borate Synthesis at 70oC

Authors: E. Moroydor Derun, A. S. Kipcak, A. Kaplan, S. Piskin

Abstract:

Magnesium wastes are produced by many industrial activities. This waste problem is becoming a future problem for the world. Magnesium borates have many advantages such as; high corrosion resistance, heat resistance, high coefficient of elasticity and can also be used in the production of material against radiation. Addition, magnesium borates have great potential in sectors including ceramic and detergents industry and superconducting materials. In this study, using the starting materials of waste magnesium and H3BO3 the hydrothermal method was applied at a moderate temperature of 70oC. Several mole ratios of waste magnesium to H3BO3 are selected as; 1:2, 1:4, 1:6, 1:8, 1:10. Reaction time was determined as 1 hour. After the synthesis, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are applied to products. As a result the forms of mcallisterite “Mg2(B6O7(OH)6)2.9(H2O)”, admontite “MgO(B2O3)3.7(H2O)” and magnesium boron hydrate (MgO(B2O3)3.6(H2O)” are obtained. 

Keywords: Hydrothermal synthesis, magnesium borates, waste magnesium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
3828 Kinetic Study of Gluconic Acid Batch Fermentation by Aspergillus niger

Authors: Akbarningrum Fatmawati, Rudy Agustriyanto, Lindawati

Abstract:

Gluconic acid is one of interesting chemical products in industries such as detergents, leather, photographic, textile, and especially in food and pharmaceutical industries. Fermentation is an advantageous process to produce gluconic acid. Mathematical modeling is important in the design and operation of fermentation process. In fact, kinetic data must be available for modeling. The kinetic parameters of gluconic acid production by Aspergillus niger in batch culture was studied in this research at initial substrate concentration of 150, 200 and 250 g/l. The kinetic models used were logistic equation for growth, Luedeking-Piret equation for gluconic acid formation, and Luedeking-Piret-like equation for glucose consumption. The Kinetic parameters in the model were obtained by minimizing non linear least squares curve fitting.

Keywords: Aspergillus niger, fermentation, gluconic acid, kinetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2649
3827 Effect of Gibberellic Acid and 2,4- Dichlorophenoxyacetic Acid on Fruit Development and Fruit Quality of Wax Apple

Authors: Nguyen Minh Tuan, Yen Chung–Ruey

Abstract:

This study was conducted to evaluate the effects of gibberellic acid and 2,4- dichlorophenoxyacetic acid on flower number, fruit growth and fruit quality of wax apple. GA3 and 2,4-D were applied at small bud and petal fall stage. Number of flower, fruit set, fruit drop, fruit crack, fruit growth and fruit quality were recorded. Results indicated that spraying with 10 ppm GA3 had the best results in number of flower. GA3 spray at 30 ppm gave the faster rate of fruit growth than the other treatments. Fruit set, fruit size as well as fruit weight markedly improved by spraying 30 ppm GA3, followed by 10 ppm GA3 compared to untreated control. Moreover, spray GA3 at 30 ppm was the most effective and increased total soluble solids, reduced titratable acidity and fruit drop. On the other hand, it was noticed that with 10 ppm 2,4-D application also enhanced the fruit growth rate, improved physiological and biochemical characters of fruit compared to untreated control. It was concluded that both GA3 and 2,4-D spray have positive effects on fruit development, reduced fruit drop, fruit crack and improved fruit quality of wax apple under field conditions.

Keywords: Wax apple, GA3, 2, 4-D, fruit growth, fruit quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5394
3826 The Use of Acid-Aluminium Tolerant Bradyrhizobium japonicum Formula for

Authors: Nisa Rachmania Mubarik, Tedja Imas, Aris Tri Wahyudi , Triadiati , Suharyanto, Happy Widiastuti

Abstract:

Land with low pH soil spread widely in Indonesia can be used for soybean (Glycine max) cultivation, however the production is low. The use of acid tolerant soybean and acidaluminium tolerant nitrogen-fixing bacteria formula was an alternative way to increase soybean productivity on acid soils. Bradyrhizobium japonicum is one of the nitrogen fixing bacteria which can symbiose with soybean plants through root nodule formation. Most of the nitrogen source required by soybean plants can be provided by this symbiosis. This research was conducted to study the influence of acid-aluminium tolerant B. japonicum strain BJ 11 formula using peat as carrier on growth of Tanggamus and Anjasmoro cultivar soybean planted on acid soil fields (pH 5.0- 5.5). The results showed that the inoculant was able to increase the growth and production of soybean which were grown on fields acid soil at Sukadana (Lampung) and Tanah Laut (South Kalimantan), Indonesia.

Keywords: Bradyrhizobium japonicum, acid-aluminium tolerant mutant, Tanggamus cultivar soybean, acid soils

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005