Search results for: door fan test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2931

Search results for: door fan test

2931 Door Fan Test in Data Processing Center at Portopalo Test Site

Authors: F. Noto, M. Castro, R. Garraffo, An. Mirabella, A. Rizzo, G. Cuttone

Abstract:

The door fan test is a verification procedure on the tightness of a room, necessary following the installation of saturation extinguishing systems and made mandatory according to the UNI 15004-1: 2019 standard whenever a gas extinguishing system is designed and installed. The door fan test was carried out at the Portopalo di Capo Passero headquarters of the Southern National Laboratories and highlighted how the Data Processing Center (CED) is perfectly up to standard, passing the door fan test in an excellent way. The Southern National Laboratories constitute a solid research reality, well established in the international scientific panorama. The CED in the Portopalo site has been expanded, so the extinguishing system has been expanded according to a detailed design. After checking the correctness of the design to verify the absence of air leaks, we carried out the door fan test. The activities of the Laboratori Nazionali del Sud (LNS) are mainly aimed at basic research in the field of Nuclear Physics, Nuclear and Particle Astrophysics. The Portopalo site will host some of the largest submarine wired scientific research infrastructures built in Europe and in the world, such as KM3NeT and EMSO ERIC; in particular, the site research laboratory in Portopalo will host the power supply and data acquisition systems of the underwater infrastructures, and a technological backbone will be created, unique in the Mediterranean, capable of allowing the connection, at abyssal depths, of dozens of real-time surveying and research structures of the marine environment deep.

Keywords: KM3Net, fire protection, door fan test, CED.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 301
2930 Experimental Verification and Finite Element Analysis of a Sliding Door System Used in Automotive Industry

Authors: C. Guven, M. Tufekci, E. Bayik, O. Gedik, M. Tas

Abstract:

A sliding door system is used in commercial vehicles and passenger cars to allow a larger unobstructed access to the interior for loading and unloading. The movement of a sliding door on vehicle body is ensured by mechanisms and tracks having special cross-section which is manufactured by roll forming and stretch bending process. There are three tracks and three mechanisms which are called upper, central and lower on a sliding door system. There are static requirements as strength on different directions, rigidity for mechanisms, door drop off, door sag; dynamic requirements as high energy slam opening-closing and durability requirement to validate these products. In addition, there is a kinematic requirement to find out force values from door handle during manual operating. In this study, finite element analysis and physical test results which are realized for sliding door systems will be shared comparatively.

Keywords: Finite element analysis, sliding door, experimental, verification, vehicle tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3136
2929 Large-Deflection Analysis of Automotive Vehicle's Door Wiring Harness System Using Finite Element Method

Authors: Byeong-Sam Kim, Kangsu Lee, Kyoungwoo Park, Samir Ben Chaabane

Abstract:

A Vehicle-s door wireing harness arrangement structure is provided. In vehicle-s door wiring harness(W/H) system is more toward to arrange a passenger compartment than a hinge and a weatherstrip. This article gives some insight into the dimensioning process, with special focus on large deflection analysis of wiring harness(W/H) in vehicle-s door structures for durability problem. An Finite elements analysis for door wiring harness(W/H) are used for residual stresses and dimensional stability with bending flexible. Durability test data for slim test specimens were compared with the numerical predicted fatigue life for verification. The final lifing of the component combines the effects of these microstructural features with the complex stress state arising from the combined service loading and residual stresses.

Keywords: Large deflection, wiring harness system, finite element analysis, vehicle's door.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3349
2928 Simulation of Heat Transfer in the Multi-Layer Door of the Furnace

Authors: U. Prasopchingchana

Abstract:

The temperature distribution and the heat transfer rates through a multi-layer door of a furnace were investigated. The inside of the door was in contact with hot air and the other side of the door was in contact with room air. Radiation heat transfer from the walls of the furnace to the door and the door to the surrounding area was included in the problem. This work is a two dimensional steady state problem. The Churchill and Chu correlation was used to find local convection heat transfer coefficients at the surfaces of the furnace door. The thermophysical properties of air were the functions of the temperatures. Polynomial curve fitting for the fluid properties were carried out. Finite difference method was used to discretize for conduction heat transfer within the furnace door. The Gauss-Seidel Iteration was employed to compute the temperature distribution in the door. The temperature distribution in the horizontal mid plane of the furnace door in a two dimensional problem agrees with the one dimensional problem. The local convection heat transfer coefficients at the inside and outside surfaces of the furnace door are exhibited.

Keywords: Conduction, heat transfer, multi-layer door, natural convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
2927 A New Type Safety-Door for Earthquake Disaster Prevention - Part I

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

From the past earthquake events, many people get hurt at the exit while they are trying to go out of the buildings because of the exit doors are unable to be opened. The door is not opened because it deviates from its the original position. The aim of this research is to develop and evaluate a new type safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. The proposed door is composed of three components: outer frame joined to the wall, inner frame (door frame) and circular hollow section connected to the inner and outer frame which is used as seismic energy dissipating device.

Keywords: Earthquake disaster, FE analysis, Low yield point steel, Safety-doors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
2926 Equality, Friendship, and Violence in Slash or Yaoi Fan Art

Authors: Proud Arunrangsiwed

Abstract:

Slash or Yaoi fan art is the artwork that contains a homosexual relationship between fictional male characters, who were heterosexual in the original media. Previous belief about Slash or Yaoi fan art is that the fan fiction writers and the fan artists need to see the equality in romantic relationship. They do not prefer the pairing of man and woman, since both genders are not equal. The objectives of the current study are to confirm this belief, and to examine the relationship between equality found in Slash fan art, friendship in original media, and violence contained in fan art. Mean comparisons show that equality could be found in the pairing of hero and hero, but rarely found in the pairing of hero and villain. Regression analysis shows that the level of equality in fan art and friendship in original media are significant predictors of violence contained in fan art. Since villain-related pairings yield a high level of violence in fan art and a low level of equality, researchers of future studies should find the strategies to prevent fans to include villains in their Slash or Yaoi fan art.

Keywords: Equality, fan art, slash, violence, yaoi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3111
2925 Analysis of Distribution of Thrust, Torque and Efficiency of a Constant Chord, Constant Pitch C.R.P. Fan by H.E.S. Method

Authors: Morteza Abbaszadeh, Parvin Nikpoorparizi, Mina Shahrooz

Abstract:

For the first time since 1940 and presentation of theodorson-s theory, distribution of thrust, torque and efficiency along the blade of a counter rotating propeller axial fan was studied with a novel method in this research. A constant chord, constant pitch symmetric fan was investigated with Reynolds Stress Turbulence method in this project and H.E.S. method was utilized to obtain distribution profiles from C.F.D. tests outcome. C.F.D. test results were validated by estimation from Playlic-s analytical method. Final results proved ability of H.E.S. method to obtain distribution profiles from C.F.D test results and demonstrated interesting facts about effects of solidity and differences between distributions in front and rear section.

Keywords: C.F.D Test, Counter Rotating Propeller, H.E.S. Method, R.S.M. Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3073
2924 Performance of Piezoelectric Cooling Fan with Rectangular Blade

Authors: Thomas Jin-Chee Liu, Yu-Shen Chen

Abstract:

Using the numerical and experimental methods, this paper discusses some primary studies on the vibration and cooling performances of the piezoelectric cooling fan with the rectangular blade. When the fan works at its natural frequency, the vibrating displacement is largest and the cooling performance is best. Due to the vibration behavior, the cooling performance is affected by the geometry, material property, and working frequency of the piezoelectric cooling fan. 

Keywords: Piezoelectric cooling fan, finite element, vibration, natural frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
2923 Development of New Cooling System using Nacelle Duct

Authors: Minho Ha, SeungHeo, Cheolung Cheong, Park K. Y.

Abstract:

In this paper, a new cooling system using a nacelle duct is proposed for the mechanical room in the household refrigerator. The conventional mechanical room consists of a condenser, a compressor and an axial fan. The axial fan is mainly responsible for cooling the condenser and the compressor. The new cooling system is developed by replacing the axial fan with the nacelle duct including the small centrifugal fan. The parametric study is carried out to find the optimum designs of the nacelle duct in terms of performance and efficiency. Through this study, it is revealed that the new system can reduce the space, electrical power and noise compared with the conventional system

Keywords: Centrifugal Fan, Cooling Fan, Nacelle Duct, Refrigerator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
2922 Investigation of the Aerodynamic Characters of Ducted Fan System

Authors: Wang Bo , Guo Zheng , Wang Peng , Shan Shangqiu , Hou Zhongxi

Abstract:

This paper investigates the aerodynamic characters of a model ducted fan system, analyses the basic principle of the effect of thrust promotion and torque reduction, discovers the relationship between the revolutions per minute(RPM) of the fan and the characters of thrust, as well as system torque. Firstly a model ducted fan has been designed and manufactured according to the specific structure of flow field, then CFD simulation has been carried out to analyze such aerodynamics, finally bench tests have been used to validate the simulation results and system configuration.

Keywords: ducted fan, free vortex flow, stator blade, screw torque, thrust increase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4438
2921 The Grinding Influence on the Strength of Fan-Out Wafer-Level Packages

Authors: Z. W. Zhong, C. Xu, W. K. Choi

Abstract:

To build a thin fan-out wafer-level package, the package had to be ground to a thin level. In this work, the influence of the grinding processes on the strength of the fan-out wafer-level packages was investigated. After different grinding processes, all specimens were placed on a three-point-bending fixture installed on a universal tester for three-point-bending testing, and the strength of the fan-out wafer-level packages was measured. The experiments revealed that the average flexure strength increased with the decreasing surface roughness height of the fan-out wafer-level package tested. The grinding processes had a significant influence on the strength of the fan-out wafer-level packages investigated.

Keywords: FOWLP strength, surface roughness, three-point bending, grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
2920 Selection and Design of an Axial Flow Fan

Authors: D. Almazo, C. Rodríguez, M. Toledo

Abstract:

This work presents a methodology for the selection and design of propeller oriented to the experimental verification of theoretical results. The problem of propeller selection and design usually present itself in the following manner: a certain air volume and static pressure are required for a certain system. Once the necessity of fan design on a theoretical basis has been recognized, it is possible to determinate the dimensions for a fan unit so that it will perform in accordance with a certain set of specifications. The same procedures in this work then can be applied in other propeller selection.

Keywords: airfoil, axial flow, blade, fan, hub, mathematical algorithm, propeller design, simulation, wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13641
2919 Notes on Vibration Design for Piezoelectric Cooling Fan

Authors: Thomas Jin-Chee Liu, Yu-Shen Chen, Hsi-Yang Ho, Jyun-Ting Liu, Chih-Chun Lee

Abstract:

This paper discusses some notes on the vibration design for the piezoelectric cooling fan. After reviewing the fundamental formulas of the cantilever Euler beam, it is not easy to find the optimal design of the piezoelectric fan. The experiments also show the complicated results of the vibration behavior and air flow.

Keywords: Piezoelectric cooling fan, vibration, cantilever Euler beam, air flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064
2918 Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests

Authors: M. Tufekci, C. Guven

Abstract:

In Automotive Industry, sliding door systems that are also used as body closures are safety members. Extreme product tests are realized to prevent failures in design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for design process. These analyses are used before production of prototype for validation of design according to customer requirement. In result of this, substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. Cheaper model can be created by selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then optimum combination was achieved.

Keywords: Finite Element Analysis, Sliding Door Mechanism, Element Type, Structural Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
2917 CFD Modeling of a Radiator Axial Fan for Air Flow Distribution

Authors: S. Jain, Y. Deshpande

Abstract:

The fluid mechanics principle is used extensively in designing axial flow fans and their associated equipment. This paper presents a computational fluid dynamics (CFD) modeling of air flow distribution from a radiator axial flow fan used in an acid pump truck Tier4 (APT T4) Repower. This axial flow fan augments the transfer of heat from the engine mounted on the APT T4. CFD analysis was performed for an area weighted average static pressure difference at the inlet and outlet of the fan. Pressure contours, velocity vectors, and path lines were plotted for detailing the flow characteristics for different orientations of the fan blade. The results were then compared and verified against known theoretical observations and actual experimental data. This study shows that a CFD simulation can be very useful for predicting and understanding the flow distribution from a radiator fan for further research work.

Keywords: Computational fluid dynamics (CFD), acid pump truck (APT) Tier4 Repower, axial flow fan, area weighted average static pressure difference, and contour plots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8565
2916 Determination of Geometric Dimensions of a Double Sided Linear Switched Reluctance Motor

Authors: Dursun M., Koc F., Ozbay H.

Abstract:

In this study, a double-sided linear switched reluctance motor (LSRM) drive was investigated as an alternative actuator for vertical linear transportation applications such as a linear elevator door, hospital and subway doors which move linearly and where accurate position control and rapid response is requested. A prototype sliding elevator door that is focused on a home elevator with LSRMs is designed. The motor has 6/4 poles, 3 phases, 8A, 24V, 250 W and 250 N pull forces. Air gap between rotor and translator poles of the designed motor and phase coil-s ideal inductance profile are obtained in compliance with the geometric dimensions. Operation and switching sections as motor and generator has been determined from the inductance profile.

Keywords: Linear switched reluctance motor, sliding door, elevator door, linear motor design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
2915 Assessment of Energy Demand Considering Different Model Simulations in a Low Energy Demand House

Authors: M. Cañada-Soriano, C. Aparicio-Fernández, P. Sebastián Ferrer Gisbert, M. Val Field, J.-L. Vivancos-Bono

Abstract:

The lack of insulation along with the existence of air leakages constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, the Blower Door test can be used. It is a standardized procedure that determines the airtightness of a space by characterizing the rate of air leakages through the envelope surface. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place such as the infrared thermography. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house, refurbished under the Passive House standard, using the Blower Door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to estimate the energy demand in different scenarios. In this sense, a sequential implementation of three different energy improvement measures (insulation thickness, glazing type and infiltrations) have been analyzed.

Keywords: Airtightness, blower door, TRNSYS, infrared thermography, energy demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 274
2914 Effects of Discharge Fan on the Drying Efficiency in Flat-bed type Dryer

Authors: Jafar Hashemi, Reza Tabatabaekoloor, Toshinori Kimura

Abstract:

The study of interaction among the grain, moisture, and the surrounding space (air) is key to understanding the graindrying process. In Iran, rice (mostly Indica type) is dried by flat bed type dryer until the final MC reaches to 6 to 8%. The experiments were conducted to examine the effect of application of discharge fan with different heights of paddy on the drying efficiency. Experiments were designed based on two different configurations of the drying methods; with and without discharge fan with three different heights of paddy including; 5, 10, and 15 cm. The humid heated air will be going out immediately by the suction of discharge fan. The drying time is established upon the average final MC to achieve about 8%. To save energy and reduce the drying time, the distribution of temperature between layers should be fast and uniform with minimum difference; otherwise the difference of MC gradient between layers will be high and will induce grain breakage. The difference of final MC between layers in the two methods was 48-73%. The steady state of temperature between the two methods has saved time in the range of 10-20%, and the efficiency of temperature distribution increased 17-26% by the use of discharge fan.

Keywords: FBT Dryer, Final MC, Discharge Fan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
2913 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Door

Authors: Emin Z. Mahmud

Abstract:

This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a door – specimens CMDuS (confined masonry wall with opening for a door before strengthening) and CMDS (confined masonry wall with opening for a door after strengthening). Frequency and stiffness changes before and after GFRP (Glass Fiber Reinforced Plastic) wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMDuS and CMDS are subjected to the same effects. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP and re-tested. The initial frequency of the undamaged model CMDuS is 13.55 Hz, while at the end of the testing, the frequency decreased to 6.38 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening of the damaged wall, the natural frequency increases to 10.89 Hz. This highlights the beneficial effect of the strengthening. After completion of dynamic testing at CMDS, the natural frequency is reduced to 6.66 Hz.

Keywords: Behavior of masonry structures, Eurocode, fundamental frequency, masonry, shaking table test, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
2912 The Genesis of the Anomalous Sernio Fan, Valtellina, Northern Italy

Authors: E. De Finis, P. Gattinoni, L. Scesi

Abstract:

Massive rock avalanches formed some of the largest landslide deposits on Earth and they represent one of the major geohazards in high-relief mountains. This paper interprets a very large sedimentary fan (the Sernio fan, Valtellina, Northern Italy), located 20 Km SW from Val Pola Rock avalanche (1987), as the deposit of a partial collapse of a Deep Seated Gravitational Slope Deformation (DSGSD), afterwards eroded and buried by debris flows. The proposed emplacement sequence has been reconstructed based on geomorphological, structural and mechanical evidences. The Sernio fan is actually considered anomalous with reference to the very high ratio between the fan area (≈ 4.5km2) and the basin area (≈ 3km2). The morphology of the fan area is characterised by steep slopes (dip ≈ 20%) and the fan apex is extended for 1.8 km inside the small catchment basin. This sedimentary fan was originated by a landslide that interested a part of a large deep-seated gravitational slope deformation, involving a wide area of about 55 km². The main controlling factor is tectonic and it is related to the proximity to regional fault systems and the consequent occurrence of fault weak rocks (GSI locally lower than 10 with compressive stress lower than 20MPa). Moreover, the fan deposit shows sedimentary evidences of recent debris flow events. The best current explanation of the Sernio fan involves an initial failure of some hundreds of Mm3. The run-out was quite limited because of the morphology of Valtellina’s valley floor, and the deposit filled the main valley forming a landslide dam, as confirmed by the lacustrine deposits detected upstream the fan. Nowadays the debris flow events represent the main hazard in the study area.

Keywords: Anomalous sedimentary fans, debris flow, deep seated gravitational slope deformation, Italy, rock avalanche.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
2911 Parametric Investigation of Aircraft Door’s Emergency Power Assist System (EPAS)

Authors: Marshal D. Kafle, Jun H. Kim, Hyun W. Been, Kyoung M. Min, Sung H. Kim

Abstract:

Fluid viscous damping systems are well suited for many air vehicles subjected to shock and vibration. These damping system work with the principle of viscous fluid throttling through the orifice to create huge pressure difference between compression and rebound chamber and obtain the required damping force. One application of such systems is its use in aircraft door system to counteract the door’s velocity and safely stop it. In exigency situations like crash or emergency landing where the door doesn’t open easily, possibly due to unusually tilting of fuselage or some obstacles or intrusion of debris obstruction to move the parts of the door, such system can be combined with other systems to provide needed force to forcefully open the door and also securely stop it simultaneously within the required time i.e. less than 8 seconds. In the present study, a hydraulic system called snubber along with other systems like actuator, gas bottle assembly which together known as emergency power assist system (EPAS) is designed, built and experimentally studied to check the magnitude of angular velocity, damping force and time required to effectively open the door. Whenever needed, the gas pressure from the bottle is released to actuate the actuator and at the same time pull the snubber’s piston to operate the emergency opening of the door. Such EPAS installed in the suspension arm of the aircraft door is studied explicitly changing parameters like orifice size, oil level, oil viscosity and bypass valve gap and its spring of the snubber at varying temperature to generate the optimum design case. Comparative analysis of the EPAS at several cases is done and conclusions are made. It is found that during emergency condition, the system opening time and angular velocity, when snubber with 0.3mm piston and shaft orifice and bypass valve gap of 0.5 mm with its original spring is used, shows significant improvement over the old ones.

Keywords: Aircraft Door Damper, Bypass Valve, Emergency Power Assist System, Hydraulic Damper, Oil viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4163
2910 CFD Analysis of a Centrifugal Fan for Performance Enhancement using Converging Boundary Layer Suction Slots

Authors: K. Vasudeva Karanth, N. Yagnesh Sharma

Abstract:

Generally flow behavior in centrifugal fan is observed to be in a state of instability with flow separation zones on suction surface as well as near the front shroud. Overall performance of the diffusion process in a centrifugal fan could be enhanced by judiciously introducing the boundary layer suction slots. With easy accessibility of CFD as an analytical tool, an extensive numerical whole field analysis of the effect of boundary layer suction slots in discrete regions of suspected separation points is possible. This paper attempts to explore the effect of boundary layer suction slots corresponding to various geometrical locations on the impeller with converging configurations for the slots. The analysis shows that the converging suction slots located on the impeller blade about 25% from the trailing edge, significantly improves the static pressure recovery across the fan. Also it is found that Slots provided at a radial distance of about 12% from the leading and trailing edges marginally improve the static pressure recovery across the fan.

Keywords: Boundary layer suction converging slot, Flowseparation, Sliding mesh, Unsteady analysis, Recirculation zone, Jetsand wakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3055
2909 An Experimental Study on Clothes Drying Using Waste Heat from Split Type Air Conditioner

Authors: P. Suntivarakorn, S. Satmarong, C. Benjapiyaporn, S. Theerakulpisut

Abstract:

This paper was to study the clothes dryer using waste heat from a split type air conditioner with a capacity of 12,648 btu/h. The drying chamber had a minimum cross section area with the size of 0.5 x 1.0 m2. The chamber was constructed by sailcloth and was inside folded with aluminium foil. Then, it was connected to the condensing unit of an air conditioner. The experiment was carried out in two aspects which were the clothes drying with and without auxiliary fan unit. The results showed that the drying rate of clothes in the chamber installed with and without auxiliary fan unit were 2.26 and 1.1 kg/h, respectively. In case of the chamber installed with a auxiliary fan unit, the additional power of 0.011 kWh was consumed and the drying rate was higher than that of clothes drying without auxiliary fan unit. Without auxiliary fan unit installation, no energy was required but there was a portion of hot air leaks away through the punctured holes at the wall of the drying chamber, hence the drying rate was dropped below. The drying rate of clothes drying using waste heat was higher than natural indoor drying and commercial dryer which their drying rate were 0.17 and 1.9 kg/h, respectively. It was noted that the COP of the air conditioner did not change during the operating of clothes drying.

Keywords: Drying Rate, Clothes Dryer, COP, Air Conditioner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3549
2908 Incorporation of Long-Term Redundancy in ECG Time Domain Compression Methods through Curve Simplification and Block-Sorting

Authors: Bachir Boucheham, Youcef Ferdi, Mohamed Chaouki Batouche

Abstract:

We suggest a novel method to incorporate longterm redundancy (LTR) in signal time domain compression methods. The proposition is based on block-sorting and curve simplification. The proposition is illustrated on the ECG signal as a post-processor for the FAN method. Test applications on the new so-obtained FAN+ method using the MIT-BIH database show substantial improvement of the compression ratio-distortion behavior for a higher quality reconstructed signal.

Keywords: ECG compression, Long-term redundancy, Block-sorting, Curve Simplification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
2907 Some New Inequalities for Eigenvalues of the Hadamard Product and the Fan Product of Matrices

Authors: Jing Li, Guang Zhou

Abstract:

Let A and B be nonnegative matrices. A new upper bound on the spectral radius ρ(A◦B) is obtained. Meanwhile, a new lower bound on the smallest eigenvalue q(AB) for the Fan product, and a new lower bound on the minimum eigenvalue q(B ◦A−1) for the Hadamard product of B and A−1 of two nonsingular M-matrices A and B are given. Some results of comparison are also given in theory. To illustrate our results, numerical examples are considered.

Keywords: Hadamard product, Fan product; nonnegative matrix, M-matrix, Spectral radius, Minimum eigenvalue, 1-path cover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
2906 Numerical Simulation of a Solar Photovoltaic Panel Cooled by a Forced Air System

Authors: D. Nebbali, R. Nebbali, A. Ouibrahim

Abstract:

This study focuses on the cooling of a photovoltaic panel (PV). Indeed, the cooling improves the conversion capacity of this one and maintains, under extreme conditions of air temperature, the panel temperature at an appreciable level which avoids the altering. To do this, a fan provides forced circulation of air. Because the fan is supplied by the panel, it is necessary to determine the optimum operating point that unites efficiency of the PV with the consumption of the fan. For this matter, numerical simulations are performed at varying mass flow rates of air, under two extreme air temperatures (50°C, 25°C) and a fixed solar radiation (1000W.m2) in a case of no wind.

Keywords: Energy conversion, efficiency, balance energy, solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
2905 Rotor Concepts for the Counter Flow Heat Recovery Fan

Authors: Christoph Speer

Abstract:

Decentralized ventilation systems should combine a small and economical design with high aerodynamic and thermal efficiency. The Counter Flow Heat Recovery Fan (CHRF) provides the ability to meet these requirements by using only one cross flow fan with a large number of blades to generate both airflows and which simultaneously acts as a regenerative counter flow heat exchanger. The successful development of the first laboratory prototype has shown the potential of this ventilation system. Occurring condensate on the surfaces of the fan blades during the cold and dry season can be recovered through the characteristic mode of operation. Hence the CHRF provides the possibility to avoid the need for frost protection and condensate drain. Through the implementation of system-specific solutions for flow balancing and summer bypass the required functionality is assured. The scalability of the CHRF concept allows the use in renovation as well as in new buildings from single-room devices through to systems for office buildings. High aerodynamic and thermal efficiency and the lower number of required mechatronic components should enable a reduction in investment as well as operating costs. The rotor is the key component of the system, the requirements and possible implementation variants are presented.

Keywords: CHRF, counter flow heat recovery fan, decentralized ventilation system, renovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
2904 Numerical Analysis of a Centrifugal Fan for Improved Performance using Splitter Vanes

Authors: N. Yagnesh Sharma, K. Vasudeva Karanth

Abstract:

The flow field in a centrifugal fan is highly complex with flow reversal taking place on the suction side of impeller and diffuser vanes. Generally performance of the centrifugal fan could be enhanced by judiciously introducing splitter vanes so as to improve the diffusion process. An extensive numerical whole field analysis on the effect of splitter vanes placed in discrete regions of suspected separation points is possible using CFD. This paper examines the effect of splitter vanes corresponding to various geometrical locations on the impeller and diffuser. The analysis shows that the splitter vanes located near the diffuser exit improves the static pressure recovery across the diffusing domain to a larger extent. Also it is found that splitter vanes located at the impeller trailing edge and diffuser leading edge at the mid-span of the circumferential distance between the blades show a marginal improvement in the static pressure recovery across the fan. However, splitters provided near to the suction side of the impeller trailing edge (25% of the circumferential gap between the impeller blades towards the suction side), adversely affect the static pressure recovery of the fan.

Keywords: Splitter vanes, Flow separation, Sliding mesh, Unsteady analysis, Recirculation zone, Jets and wakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3122
2903 A Consideration on the Offset Frontal Impact Modeling Using Spring-Mass Model

Authors: Jaemoon Lim

Abstract:

To construct the lumped spring-mass model considering the occupants for the offset frontal crash, the SISAME software and the NHTSA test data were used. The data on 56 kph 40% offset frontal vehicle to deformable barrier crash test of a MY2007 Mazda 6 4-door sedan were obtained from NHTSA test database. The overall behaviors of B-pillar and engine of simulation models agreed very well with the test data. The trends of accelerations at the driver and passenger head were similar but big differences in peak values. The differences of peak values caused the large errors of the HIC36 and 3 ms chest g’s. To predict well the behaviors of dummies, the spring-mass model for the offset frontal crash needs to be improved.

Keywords: Chest g’s, HIC36, lumped spring-mass model, offset frontal impact, SISAME.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696
2902 The Investigation of Motor Cooling Performance

Authors: Chih-Chung Chang, Sy-Chi Kuo, Chen-Kang Huang, Sih-Li Chen

Abstract:

This study experimentally and numerically investigates motor cooling performance. The motor consists of a centrifugal fan, two axial fans, a shaft, a stator, a rotor and a heat exchanger with 637 cooling tubes. The pressure rise-flow rate (P-Q) performance curves of the cooling fans at 1800 rpm are tested using a test apparatus complying with the Chinese National Standard (CNS) 2726. Compared with the experimental measurements, the numerical analysis results show that the P-Q performance curves of the axial fan and centrifugal fan can be estimated within about 2% and 6%, respectively. By using the simplified model, setting up the heat exchanger and stator as porous media, the flow field in the motor is calculated. By using the results of the flow field near the rotor and stator, and subjecting the heat generation rate as a boundary condition, the temperature distributions of the stator and rotor are also calculated. The simulation results show that the calculated temperature of the stator winding near the axial fans is lower by about 5% than the measured value, and the calculated temperature of the stator core located at the center of the stator is about 1% higher than the measured value. Besides, discussion is made to improve the motor cooling performance.

Keywords: Motor cooling, P-Q performance curves, CNS, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668