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Abstract—We present a simple nonconforming approximation of
the linear two–point boundary value problem which violates patch test
requirements. Nevertheless the solutions, obtained from these type of
approximations, converge to the exact solution.
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I. INTRODUCTION

THe patch test was introduced in mid-1960s by Irons and
co–workers in articles [1] and [2]. Since then the test has

been recognized as a condition that assures the convergence
of a nonconforming finite element method. The theoretical
importance of the patch test was recognized in the pioneering
work by Strang and Fix [3]. Since then the nonconforming
method has received a considerable attention in engineering
literature and practice.

Sander and Beckers [4] and Oliveira in [5] were the first
who questioned the validity of the classical patch test, and in
particular, its necessity for convergence.

In 1979 Stummel has in [6] derived a generalized patch
test and questioned the validity of the classical patch test [7],
especially its sufficiency for convergence. His works started
a series of pro et contra discussions, see, e. g. [8], [9]–[12],
[13]–[14].

The aim of our paper is to construct a simple nonconforming
approximations which do not satisfy patch test requirements,
yet the solutions obtained converge to the exact solution. The
necessity of the patch test for convergence is thus questioned.
Although the simple nonconforming finite element constructed
here is of an academic value only, the proof of its convergence
and its violation of the patch test allow a general conclusion
concerning the necessity of the patch test.

II. NONCONFORMING APPROXIMATION

Let us consider the variational equation of the form
∫

I

(a1 u
′ v′ + a0 u v) dx =

∫

I

(f1 v
′ + f0 v) dx

for u ∈ V , ∀v ∈ V , where I is an open interval (0, 1) and

V = {v ∈ H1(I), v(0) = 0}
is a closed subspace of the Sobolev space H1(I) equipped
with the norm

‖ · ‖I : v �→
√∫

I

((v′)2 + v2) dx.
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The coefficients a1 and a0 are measurable functions on domain
I and fi ∈ L2(I) for i = 1, 0.

We divide interval I by points x0, . . ., xn into n open
intervals Ii = (xi−1, xi) ; 1 ≤ i ≤ n of length hi. Then
we approximate the solution u with

uh =

n∑

i=1

zi wi ∈ Wh,

where we have chosen special nonconforming base functions
w1, . . ., wn, as illustrated in Figs. 1-3. The meaning of ampli-
tudes zi is shown in Fig. 4.

We rewrite the above given task into the weak form: “Find
the solution uh ∈ Wh of equation
n∑

i=1

∫

Ii

(a1 u
′
h v

′
h + a0 uh vh) dx =

n∑

i=1

∫

Ii

(f1 v
′
h + f0 vh) dx

for ∀vh ∈ Wh”, where Wh denotes a nonconforming approx-
imation space obtained from base functions w1, . . . , wn.

Fig. 1. Base function w1.

According to Ciarlet [15, p. 94], we denote the finite
element in R1 with triple (I, P,Σ) where:
(i) I is an open interval in R1 of the length h;

(ii) P is finite–dimensional space of real–valued functions
over interval I . We let dim(P ) = 2;

(iii) Σ is a set of two linear forms (degrees of freedom) Σ =
{φ1, φ2} where:

φ1 : vh �→ vh(t0), (1a)
φ2 : vh �→ vh(t1), (1b)

where we have denoted two points t0, t1 ∈ I with
distance ζ h = min(h3 , o(h)) measured from the starting
and the ending point of the interval I , respectively. We
have also used well known Landau symbol o1.

1We write f(h) = O(g(h)), if there exists such a constant A �= 0 that
limh→0

f(h)
g(h)

= A. We also write f(h) = o(g(h)) when limh→0
f(h)
g(h)

= 0.
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Fig. 2. Base functions wi; 2 ≤ i ≤ n− 1.

Fig. 3. Base function wn.

The set of functionals is P–unisolvent. According to Ciarlet
[15, p. 94] such finite elements are allowed.

III. CONVERGENCE

We can use F-E-M convergence test, derived by Shi [11].
According to Shi, the finite element space Wh is said to pass
the F1–test for problems of order 2, if for every function vh ∈
Wh, the jump of vh, denoted by [vh], across each interface F
of two adjacent elements I1 and I2 satisfies the condition
∣∣∣∣
∫

F

[vh] dx

∣∣∣∣ ≤ o
(
h
1/2
I

)
‖vh‖I1∪I2 , hI = max (hI1 , hI2) .

(2)
For every outer boundary xi ∈ {x0 ≡ 0, xn ≡ 1} with the
Dirichlet boundary conditions, the jump [vh] ≡ vh(xi) and
the above condition is understood as

|vh(0)| ≤ o
(
h
1/2
1

)
‖vh‖I1 or |vh(1)| ≤ o

(
h1/2
n

)
‖vh‖In .

Fig. 4. Nonconforming approximation uh (n > 3) (only elements 1–3 are
shown).

We check F1–test in R1, particularly equation (2) from [11].
Let us have ζ = ζ1 = . . . = ζn and h = h1 = . . . = hn. With
the help of Figure 4, we easily derive

∫

F

[vh] dx =
ζ

1− 2 ζ
((zi+1 − zi) + (zi − zi−1)) ,

‖vh‖1,Ii∪Ii+1
=

√
(zi+1 − zi)

2 + (zi − zi−1)
2

(1− 2 ζ)2 h
+O

(√
h
)
,

(3)

where Ii and Ii+1 for i = 2, . . ., n − 1 denote the intervals,
and F = Ii ∩ Ii+1 their intersections. We can, using the
abbreviations a = zi+1 − zi and b = zi − zi−1, transform
equation (2) from [11] into the form

ζ2

(1− 2 ζ)
2 (a+ b)2 ≤

⎛
⎝
o
(√

h
)

√
h

⎞
⎠

2

a2 + b2

(1− 2 ζ)
2 + o(h).

It is easy to see, that the choice ζ = O(h) fulfills the
inequality (2). Using theorem 1 from [11] the convergence
of the proposed approximate solution is thus assured.

IV. NUMERICAL EXAMPLES

A. First example

For the illustration of the behavior of such an approxi-
mation, we present the numerical example. We consider the
boundary value problem

−u′′(x) = 0 ∀x ∈ (0, 1), u(0) = 0, u′(1) = 1

with the exact solution u = x. We first rewrite this problem
into a weak form: “Find the solution u ∈ V of the equation

∫ 1

0

u′ v′ dx =

∫ 1

0

v′ dx ∀v ∈ V.”

We divide the interval I = (0, 1) into n equal subintervals
Ii, where h = 1/n, and also choose equal ζi = ζ for all
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i = 1, 2, . . . , n. Then we search for an approximate solution
uh ∈ Wh of the equation

n∑

i=1

∫

Ii

u′
h v

′
h dx =

n∑

i=1

∫

Ii

v′h dx ∀vh ∈ Wh.

Using the same technique as described in [9], it is easy
to see that ‖un − x (1 − 2 ζ)‖2 → 0 and ‖u′

n − 1‖2 → 0
when n → ∞. When choosing ζ = O(h), the approximations
‖un − x‖2 and ‖u′

n − 1‖2 go to zero for n → ∞ in the sense
of the L2 norm ‖ · ‖2.

It is easy to see that the patch test, which has in [12] the
following mathematical formulation

dh(u
∗, vh) = ah(u

∗, vh)− ah(uh, vh) = 0

∀u∗ ∈ P1, ∀vh ∈ Wh, is not fulfilled. In the last equa-
tion, we have used abbreviations: the linear solution of the
problem u∗, the finite element approximation uh, the space
of polynomials of first degree P1, and the bilinear form
ah(u, v) =

∑n
i=1

∫
Ii
u′ v′ dx.

The behavior of numerical solutions for different ζ ′s is
presented in Figs. 6 and 5 below.
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Fig. 5. Nonconforming approximations for linear solution u = x and its
derivative u′

= 1 for ζ = h.

The observation of Fig. 5 indicates that the approximations
of u along with their first derivatives obtained by finite
elements with ζ = O(h) converge to the exact solution of
Eq. (4) exactly as predicted theoretically.

In contrast, the approximations obtained by finite elements
with the fixed ζ do not converge to the exact solution. In
fact, they converge to the solution of another boundary value
problem.

B. Second example

We solve the boundary value problem

−u′′(x) + u(x) = x2 ∀x ∈ (0, 1), u(0) = 0, u(1) = 0 (4)
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Fig. 6. Nonconforming approximations for linear solution u = x and its
derivative u′

= 1 for fixed ζ = 0.2 and ζ = 0.1.

with the exact solution

u(x) = 2 + x2 −
(−3 + 2 e−1

)
ex

−e1 + e−1
+

(
2 e1 − 3

)
e−x

−e1 + e−1

and consider also the boundary value problem

−u′′(x) + (1− 2 ζ)2u(x) = (1− 2 ζ)2 x2 (5)

on interval (0, 1) with prescribed boundary conditions u(0) =
0 and u(1) = 0.
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Fig. 7. Nonconforming approximations for solution u of the boundary value
problem (4).

The graphs in Figs. 7 and 8 show the convergence to the
exact solution of Eq. (4) for ζ = O(h) and the divergence
for the fixed ζ = 0.1. In fact these solutions converge to
another solution – the exact solution of Eq. (5). This kind
of divergence, i.e. the convergence to the solution of another
boundary value problem, is quite common and could be
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Fig. 8. Nonconforming approximations for solution derivative u′ of the
boundary value problem (4).

very dangerous and misleading when the exact solution of
the boundary value problem is not known or we have no
theoretical convergence criterion.

V. CONCLUSION

The convergence of such a type of finite elements with
ζ = O(h) does not seem surprising, because nonconforming
approximations obviously approach conforming ones. It also
looks that the elegant abstract definition of the finite element
proposed by Ciarlet allows finite elements different from
physically based finite elements usually used in engineering
practice.

According to the Stummel generalized patch test [6],
roughly speaking, the limit point decides about the conver-
gence, while according to the Irons’ patch test an arbitrary
point can take this role. Such a decision should be done
carefully. Let us illustrate this on a simple example from the
mathematical analysis. It is well known that the limit of the
sequence of continuous functions need not be continuous, as
well as the limit of the sequence of discontinuous functions
could be continuous. Origin of the divergences met here could
be due to the nature of the used approximations and possibly
due to the wild nature of Sobolev spaces of the exact weak
solutions. That is why one could hardly take a decision about
the convergence using only particular points.

In some cases, however, the Irons’ patch test can definitely
serve as the theoretically useful criterion for convergence; see
Wang [16].
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