

Abstract—Mutation testing can be applied for the quality

assessment of test cases. Prioritization of mutation test generation has
been a critical element of the industry practice that would contribute to
the evaluation of test cases. The industry generally delivers the product
under the condition of time to the market and thus, inevitably sacrifices
software testing tasks, even though many test cases are required for
software verification. This paper presents an approach of applying a
social network centrality measure, PageRank, to prioritize mutation
test generation. The source code with the highest values of PageRank,
will be focused first when developing their test cases as these modules
are vulnerable for defects or anomalies which may cause the
consequent defects in many other associated modules. Moreover, the
approach would help identify the reducible test cases in the test suite,
still maintaining the same criteria as the original number of test cases.

Keywords—Software testing, mutation test, network centrality
measure, test case prioritization.

I. INTRODUCTION

UTATION testing is invented to help design tests that
consist of systems vulnerable to the introduced defects or

anomalies. The mutation used at the primary level is unit
testing. It also supports other levels, such as specification,
design, integration, and system levels [1]. The method is
applied in many programming languages such as C, C++, C#,
Java, JavaScript, and Ruby, including specification and
modeling languages.

Social Network Analysis (SNA) is a technique used for the
analysis of data that is characterized by a network of
connections between nodes and edges. The technique includes
algorithms and measures that can reveal nodes or clusters in the
network that require attention. In literature, Koochakzadeh and
Alhajj [2] applied SNA technique for generating test case
categories based on coverage information. A social network
graph was built to identify test packages or higher groups of test
cases defined as nodes connected by coverage information
between them. The quality of the discovered packages was
measured in terms of cohesion and coupling and compared
them with the original packaging from test developers. The
result showed that the technique was promising, even
improving the quality of the packages.

Maitrikul and Limpiyakorn [3] proposed an approach of
applying network centrality measures for GUI test case
prioritization. The experiments were carried out for ranking test
case importance and finding suitable parameter(s) for GUI test
case prioritization. The network graph consists of nodes

Supachai Supmak and Yachai Limpiyakorn are with the Department of

Computer Engineering, Chulalongkorn University, Bangkok 10330, Thailand
(e-mail: supachai_deerse@gmail.com, Yachai.L@chula.ac.th).

representing an action in a test case, while edges represent the
relationship between each activity. Various network centrality
measures including betweenness centrality, closeness
centrality, eigenvector centrality, and page rank were selected
for ranking both modified and new test cases during regression
test in a large recommender system. One of the findings
reported that the best measurement which would help testers
catch defect earlier in each test cycle is Betweenness centrality.

Bunmapob and Limpiyakorn [4] present a visualization
approach for exploring the defect data stored in a bug
repository. The technique of SNA is applied to uncover the
relations between defects, features, and persons. The findings
would benefit for the proactive of the software process.

This paper presents a method using a social network
centrality measure, PageRank, to prioritize mutation test
generation. The experiment was carried out to demonstrate the
benefit that would help identify the vulnerable modules which
require the robust test cases. The following sections describe
the background knowledge applied in this work, the proposed
methodology, demonstration and result, and the conclusion.

II. BACKGROUND

A. Mutation Testing

The tester always configures a set of mutation operators to
express concerning string by a tester. Mutation operators are
usually applied in feature-oriented programming inject faults
[5]. Besides, Papadakis et al. [6] describe a set of operators that
transforms syntax to define mutation testing. Each mutation
operator presents a type of defect in the code. For example, the
Arithmetic Operator changes the syntax of arithmetic - syntax
(*) - to other arithmetic - syntax (/) -. The tester maintains the
quality of test data iteratively using Mutation testing. They used
test data to evaluate the program to cause each mutation to
exhibit different behavior. When this happens, the mutation is
thought dead and no longer needs to remain in the testing
process since the fault that it represents will be detected by the
same test that killed it. Moreover, the mutation has satisfied its
requirement of identifying a helpful test case. A test process
provides a step-by-step to follow to generate a test case. Next,
mutation analysis can be applied to evaluate the test case
quality. If the test case can kill mutations, it will be reliable for
achieving effective test result, otherwise, the test case is
vulnerable. A typical mutation analysis process is shown in Fig.
1. The bold boxes represent steps that are automated, while the

Prioritization of Mutation Test Generation with
Centrality Measure
Supachai Supmak, Yachai Limpiyakorn

M

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:9, 2022

385International Scholarly and Scientific Research & Innovation 16(9) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
9,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
67

9.
pd

f

other boxes represent manual steps. The Stryker tool is used to
support mutators of operations, examples as listed in Table I.
Figs. 2 and 3 show some mutators selected from Table I to
demonstrate the objective of mutator insertion during mutation
test. In Fig. 2, the Object Literal mutator is used to evaluate a
test case by changing the object lines 3 - 5 in a function
findDntaById to be empty. Fig. 3 (a) illustrates an original
source code and (b) the original source code with the String
Literal mutator generated by the Stryker tool. The mutator line,
marked with ‘+’ under line 11, will change the original source
code where is a nonempty string to an empty string.

Fig. 1 Mutation testing process [4]

Fig. 2 Example1 of original source code with mutant

(a)

(b)

Fig. 3 Example2 of original source code with mutant

TABLE I
LIST OF SUPPORTED MUTATORS AND OPERATIONS IN STRYKER [7], [8]

Mutator Original Mutated

Arithmetic Operator

a + b
a - b
a * b
a / b

a % b

a - b
a + b
a / b
a * b
a % b

Array Declaration
New Array (1, 2, 3, 4)

[1, 2, 3, 4]
new Array ()

[]

Block Statement
Function tryTesting () {
Console.log(‘Test’);}

Function tryTesting () {}

Boolean Literal
true
false

! (a == b)

false
true

a == b
Conditional Expression while (a>b) {} while (false) {}

Equality Operator

a < b
a <= b
a > b

a >= b
a == b
a! = b

a! == b

a <= b, a >= b
a < b, a > b

a >= b, a <= b
a > b, a <b

a! = b
a == b
a! = b

Logical Operator
a && b
a ?? b

a || b
a && b

Method Expression
endWith ()

startsWith ()
startsWith ()
endsWith ()

Object Literal {foo: ‘bar’} { }

Optional Chaining
foo?.bar
foo?.[1]
foo?.()

foo.bar
foo[1]
foo()

Regex

^abc
abc$
[abc]

\d
\s
\w

a++
(?=abc)

abc
abc

[^abc]
\D
\S
\W
a

(?!abc)

String Literal
“foo” (non-emprty)

s”foo ${bar}” (string
interpolation)

“”
s””

Unary Operator +a -a

Update Operator
a++
++a

a--
--a

B. Network Centrality

SNA could be used to study the relationships, interactions
and communications among actors in a network graph. Certain
actors play key roles as the centrality in a network and they can
be discovered by some well-known network centrality
measures, such as degree centrality, betweenness centrality,
closeness centrality and PageRank. The networks reflect both
the cause of and the result of individual behavior. Analyzing
these networks provides insight to better understand how
individuals are connected, and how information flows.

PageRank was presented by Brin and Page [9] in 1998. The
algorithm has been used by Google Search for webpage
ranking, i.e., to decide which results to show at the top of its
search engine listings. However, the measure encounters some
challenges [10], that is, once a node becomes a high centrality,
it gives all its centrality to its out-links. The centrality measure
is less desirable due to not everyone known by a well-known
person is well known. To mitigate this problem, one can divide
the value of passed centrality by the number of outgoing links
(out-degree) from that node. Each connected neighbor gets a
fraction of the source node's centrality as calculated in (1):

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:9, 2022

386International Scholarly and Scientific Research & Innovation 16(9) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
9,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
67

9.
pd

f

𝐶 𝑣 𝛼 ∑ 𝐴 , 𝛽 (1)

where 𝑑 is nonzero.

III. METHODOLOGY

The proposed methodology is composed of several steps, as
illustrated in Fig. 4. The application, Transport Network
Operating System (TNOS) containing 258 source codes, is
selected for the demonstration. The application is implemented
to support customers in planning and estimating for choosing
the operating vehicle routes. The application software is
developed by JavaScript language and react native framework.
The Stryker supports many languages, for example, JavaScript,
C#, and Scala.

Fig. 4 Overview of the proposed methodology

A. Generate Mutators and Report Using Stryker

The Stryker for JavaScript is applied to TNOS application for
mutant generation. The total number of 23169 mutants
associated with 258 source code was generated as reported in
Fig. 5.

Fig. 5 Summary report of total mutants generated for TNOS

B. Define Nodes and Associated Edges

The two data files in csv format: Node and Edge, are
manually created. Excerpts of Node.csv and Edge.csv as input
to Gephi are shown in Fig. 6. The Node.csv file contains list of
source code associated with the source code ID and label. The
Edge.csv file contains source as the id of mutator type, target as
a mapping to node id, and label as a type of mutator. These two
.csv files are imported into Gephi [11] which is the Open Graph
Viz Platform. Gephi is used to process and visualize the
network graph.

Fig. 6 Node.csv and Edge.csv as input to Gephi

Table II displays the total ten types of mutators generated
from the source code or node ID 49 consisting of: Block
Statement, Boolean Literal, String Literal, Conditional
Expression, Logical Operator, Array Declaration, Object
Literal, Equality Operator, Arithmetic Operator, and Optional
Chaining. The total number of 270 mutants was generated and
inserted into the original source code, some of which are
duplicated types.

TABLE II

LIST OF MUTANTS AND ITS CATEGORY INSERTED IN NODE 49

Mutator Mutant

Block Statement const TableComponent = (props) => {};

Boolean Literal
const [showDelete, setShowDelete] =

useState(true);
String Literal selectTableStateById(state, ““)

Conditional Expression
const [dataSource, setDataSource] =

useState(false);

Logical Operator
const [dataSource, setDataSource] =
useState(storedDataSource && []);

Array Declaration
const [dataSource, setDataSource] =

useState(storedDataSource || [“Stryker was
here”]);

Object Literal {}

Equality Operator
requiredRows >= totalRows && totalRows !== 0

? totalRows : requiredRows;
Arithmetic Operator let requiredRows = page / PAGE_SIZE;

Optional Chaining ref.current.scrollTo(top);

C. Prioritize Mutated Source Code with PageRank

Based on the input data describing 258 source codes as nodes
and the description of edges representing 23169 mutants
generated by Stryker, the Gephi software then computed and
generated the network graph using the selected centrality

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:9, 2022

387International Scholarly and Scientific Research & Innovation 16(9) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
9,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
67

9.
pd

f

measure, PageRank, as illustrated in Fig. 7. The source codes
associated with the first twenty highest ranking of PageRank
values are displayed in Table III. The node ID 49 and 61 are
ranked with the highest PageRank score. The result suggested
the order of test case development for the tester. That is, the
source code with the higher PageRank value, the earlier the test
case of that source code will be developed and tested.

Fig. 7 SNA graph with PageRank centrality measure

TABLE III
LIST OF MUTATED SOURCE CODES WITH THE FIRST TWENTY HIGHEST

RANKING OF PAGERANK VALUES

ID Source Code PageRank

49 digitalmap_components/RouteMaster/List/Table.js 0.004032

61 digitalmap_components/TTTJobMonitoring/List/Table.js 0.004032

251 reducers/utils/json2csv.js 0.003984

83 dms_components/DispatchBoard/List/Table.js 0.003857

253 reducers/utils/objectByString.js 0.003840

97 dms_components/Group/Details/BzpForm.js 0.003833

64 digitalmap_components/TTTJobTrackingMapview/InfoPan
el.js

0.003829

62 digitalmap_components/TTTJobMonitoring/List/Toolbar.js 0.003825

65 digitalmap_components/TTTJobTrackingMapview/Mapvie
w.js

0.003768

136 dms_components/MasterData/ReasonMaster/SubjectReason
/Details/Form.js

0.003743

68 digitalmap_components/TTTJobTrackingMapview/StartMar
ker.js

0.003741

66 digitalmap_components/TTTJobTrackingMapview/OrderM
arker.js

0.003740

249 reducers/utils/cookies.js 0.003734

35 digitalmap_components/Map/BaseMap.js 0.003723

2 common_components/AntTable/tableUtils.js 0.003716

198 libs/normalize.js 0.003803

200 libs/validation.js 0.003803

52 digitalmap_components/RouteMaster/RouteGroup/RouteCa
ndidateTable.js

0.003790

54 digitalmap_components/RouteMaster/RouteGroup/RouteMa
sterTable.js

0.003790

56 digitalmap_components/RouteMaster/RouteMaster/RouteM
asterForm.js

0.003787

Observing that the node with a high PageRank score means
the source code that calls or imports many functions such as
node ID 49 calling eighteen functions as shown in Fig. 8. While
node ID 56, ranking the twentieth, merely calls twelve functions
as shown in Fig. 9.

Fig. 8 Source code of node ID 49

Fig. 9 Source code of node ID 56

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:9, 2022

388International Scholarly and Scientific Research & Innovation 16(9) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
9,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
67

9.
pd

f

D. Perform Mutation Test

The inputs required for the Stryker mutation test consist of a
set of test cases of source codes under test created by the tester,
associated with the mutated source codes generated by Stryker
in the previous step. Omise [12] is chosen for demonstrating
mutation testing here. Omise is a payment gateway and REST
API allowing integration across a variety of languages and
frameworks. It consists of 19 source codes: errors/api-error.js,
api.js, apiResources.js, logger.js, and the rest of 15 source codes
contained in the resources folder. Account.js is the code with
the highest PageRank score, while Event.js is the code with the
lowest PageRank score. The results of mutation test on
Account.js and Event.js are reported in Figs. 10 and 11,
respectively. Compared to Event.js, Account.js achieves the
higher performance, that is, higher percentage of Mutation
score, higher number of killed mutants and lower number of
survived. Start testing the source codes with high PageRank
scores would cover�the subsequent testing those with low
PageRank scores that contain the same types of mutants,
resulting in decreased time and efforts.

Fig. 10 Mutation test result of code with highest PageRank score

Fig. 11 Mutation test result of code with Lowest PageRank score

IV. CONCLUSION

It is evident that testing is one of resource consumption
activities in a software project. And it is ideal to achieve path
coverage when testing. In literature, test case prioritization is
one of the well-known solutions to alleviate the pain.

Mutation test is a technique used for quality assessment of
test suite. It helps identify the test case vulnerability by means

of mutant insertion into the original source code. The high-
quality test cases are expected to kill high percentage of
mutants. This paper proposed applying a network centrality
measure called PageRank for test case prioritization during
mutation test performed by the Stryker tool. The source code
that calls many functions will earn the high PageRank score due
to plenty of outgoing edges from other nodes or source codes.
The software testing process starting from these source codes
with high PageRank scores will yield higher test coverage since
the tester can skip writing the test cases and ignore testing those
lower PageRank source codes containing the same types of
mutants that have been successfully killed when testing the high
PageRank code formerly. Further direction would be the
exploration of other network centrality measures such as
Betweenness centrality for test case prioritization in mutation
testing.

REFERENCES
[1] A. J. Offutt, R. H. Untch, Mutation 2000: Uniting the orthogonal,

Mutation Testing for the New Century, Advances in Database Systems,
Springer, Boston, MA, USA, 2001, pp.34-44

[2] N. Koochakzadeh, R. Alhajj, Social Network Analysis in Software Testing
to Categorize Unit Test Cases Based on Coverage Information, 2011
IEEE International Conference on High Performance Computing and
Communications, 2011, pp. 412-416

[3] C. Maitrikul, Y. Limpiyakorn, GUI Test Case Prioritization using Social
Network Analysis, 2022, 13th International Conference on Computer and
Electrical Engineering

[4] P. Bunmapob, Y. Limpiyakorn, Exploring Defect Data with Network
Visualization, 2022 2nd IEEE International Conference on Software
Engineering and Artificial Intelligence, 2022, pp.204

[5] A. J. Offutt, R. H. Untch, Mutation 2000: Uniting the orthogonal,
Mutation Testing for the New Century, Advances in Database Systems,
Springer, Boston, MA, USA, 2001, pp.34-44

[6] M. Papadakis, M. Kintis, Z. Jie, J. Yue, Y. L. Traon, M. Harman, Mutation
testing advances: An analysis and survey, 2019, pp. 275-378

[7] Stryker Mutator, https://stryker-mutator.io/docs/
[8] Supported Mutators, https://stryker-mutator.io/docs/mutation-testing-

elements/supported-mutators/
[9] S. Brin, L. Page, “The Anatomy of a Large-Scale Hypertextual Web

Search Engine,” in Proc. 7th International World-Wide Web Conference,
Brisbane, Australia, 1998, pp. 107-117.

[10] R. Zafarani, M. A. Abbasi, L. Huan, Social media mining: an
introduction. Cambridge University, 2014, pp.51-79.

[11] Gephi, https://gephi.org/

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:9, 2022

389International Scholarly and Scientific Research & Innovation 16(9) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
9,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
67

9.
pd

f

