Search results for: continuous adsorption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1009

Search results for: continuous adsorption

949 The Influence of Surface Potential on the Kinetics of Bovine Serum Albumin Adsorption on a Biomedical Grade 316LVM Stainless Steel Surface

Authors: Khawtar Hasan Ahmed, Sasha Omanovic

Abstract:

Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) in combination with electrochemistry, was employed to study the influence of surface charge (potential) on the kinetics of bovine serum albumin (BSA) adsorption on a biomedical-grade 316LVM stainless steel surface is discussed. The BSA adsorption kinetics was found to greatly depend on the surface potential. With an increase in surface potential towards more negative values, both the BSA initial adsorption rate and the equilibrium (saturated) surface concentration also increased. Both effects were explained on the basis of replacement of well-ordered water molecules at the 316LVM / solution interface, i.e. by the increase in entropy of the system.

Keywords: adsorption, biomedical grade stainless steel, bovine serum albumin (BSA), electrode surface potential / charge, kinetics, PM-IRRAS, protein/surface interactions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
948 Adsorption Capacities of Activated Carbons Prepared from Bamboo by KOH Activation

Authors: Samorn Hirunpraditkoon, Nathaporn Tunthong, Anotai Ruangchai, Kamchai Nuithitikul

Abstract:

The production of activated carbon from low or zero cost of agricultural by-products or wastes has received great attention from academics and practitioners due to its economic and environmental benefits. In the production of bamboo furniture, a significant amount of bamboo waste is inevitably generated. Therefore, this research aimed to prepare activated carbons from bamboo furniture waste by chemical (KOH) activation and determine their properties and adsorption capacities for water treatment. The influence of carbonization time on the properties and adsorption capacities of activated carbons was also investigated. The finding showed that the bamboo-derived activated carbons had microporous characteristics. They exhibited high tendency for the reduction of impurities present in effluent water. Their adsorption capacities were comparable to the adsorption capacity of a commercial activated carbon regarding to the reduction in COD, TDS and turbidity of the effluent water.

Keywords: Activated carbon, Bamboo, Water treatment, Chemical activation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5061
947 Removal of Copper and Zinc Ions onto Biomodified Palm Shell Activated Carbon

Authors: Gulnaziya Issabayeva, Mohamed Kheireddine Aroua

Abstract:

commercially produced in Malaysia granular palm shell activated carbon (PSAC) was biomodified with bacterial biomass (Bacillus subtilis) to produce a hybrid biosorbent of higher efficiency. The obtained biosorbent was evaluated in terms of adsorption capacity to remove copper and zinc metal ions from aqueous solutions. The adsorption capacity was evaluated in batch adsorption experiments where concentrations of metal ions varied from 20 to 350 mg/L. A range of pH from 3 to 6 of aqueous solutions containing metal ions was tested. Langmuir adsorption model was used to interpret the experimental data. Comparison of the adsorption data of the biomodified and original palm shell activated carbon showed higher uptake of metal ions by the hybrid biosorbent. A trend in metal ions uptake increase with the increase in the solution-s pH was observed. The surface characterization data indicated a decrease in the total surface area for the hybrid biosorbent; however the uptake of copper and zinc by it was at least equal to the original PSAC at pH 4 and 5. The highest capacity of the hybrid biosorbent was observed at pH 5 and comprised 22 mg/g and 19 mg/g for copper and zinc, respectively. The adsorption capacity at the lowest pH of 3 was significantly low. The experimental results facilitated identification of potential factors influencing the adsorption of copper and zinc onto biomodified and original palm shell activated carbon.

Keywords: Adsorption, biomodification, copper, zinc, palm shell carbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
946 GIC-Based Adsorbents for Wastewater Treatment through Adsorption and Electrochemical-Regeneration

Authors: H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, N. W. Brown, H. Sattar

Abstract:

Intercalation imparts interesting features to the host graphite material. Two different types of intercalated compounds called (GIC-bisulphate or Nyex 1000 and GIC-nitrate or Nyex 3000) were tested for their adsorption capacity and ability to undergo electrochemical regeneration. It was found that Nyex 3000 showed comparatively slow kinetics along with reduced adsorption capacity to one half for acid violet 17 as adsorbate. Acid violet 17 was selected as model organic pollutant for evaluating comparative performance of said adsorbents. Both adsorbent materials showed 100% regeneration efficiency as achieved by passing a charge of 36 C g-1 at a current density of 12 mA cm-2 and a treatment time of 60 min.  

Keywords: Intercalation compound of graphite, Adsorption, electrochemical-regeneration, waste water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3995
945 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents

Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna Mohd Zain

Abstract:

Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 150oC.Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.

Keywords: Activated carbon, Palm shell-PEEK, Regeneration, thermal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
944 Preparation and Characterisation of Chemically Activated Almond Shells by Optimization of Adsorption Parameters for Removal of Chromium VI from Aqueous Solutions

Authors: Inamullah Bhatti, Khadija Qureshi, R. A. Kazi, Abdul Khalique Ansari

Abstract:

Activated carbon was prepared from agricultural waste “almond (Prunus amygdalus) nut shells" by chemical activation with phosphoric acid as an activating agent at 450 °C for 24 hr soaking time. The physical and chemical properties were analyzed. The adsorption of chromium VI from aqueous solution on almond nut shell activated carbon (ASAC) was investigated. The adsorption process parameters pH, agitation speed, agitation time, adsorbent dose were optimized. 98% of Cr VI was sorbed at pH 2 and stirring speed 200 rpm.. Surface structure showed that ASAC has a spongy type structure showing large number of pores

Keywords: adsorption, sorbent , sorbate and activation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403
943 Characterization of Catalagzi Fly Ash for Heavy Metal Adsorption

Authors: Nurcan Tugrul, Nil Baran Acarali, Seyma Kolemen, Emek Moroydor Derun, Sabriye Piskin

Abstract:

Fly ash is a significant waste that is released of thermal power plants and defined as very fine particles that are drifted upward with up taken by the flue gases due to the burning of used coal [1]. The fly-ash is capable of removing organic contaminants in consequence of high carbon content, a large surface area per unit volume and contained heavy metals. Therefore, fly ash is used as an effective coagulant and adsorbent by pelletization [2, 3]. In this study, the possibility of use of fly ash taken from Turkey like low-cost adsorbent for adsorption of zinc ions found in waste water was investigated. The fly ash taken from Turkey was pelletized with bentonite and molass to evaluate the adsorption capaticity. For this purpose; analyses such as sieve analysis, XRD, XRF, FTIR and SEM were performed. As a result, it was seen that pellets prepared from fly ash, bentonite and molass would be used for zinc adsorption.

Keywords: Fly ash, heavy metal, sieve, adsorbent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
942 Removal of Chromium from Aqueous Solution using Synthesized Polyaniline in Acetonitrile

Authors: Majid Riahi Samani, Seyed Mehdi Borghei

Abstract:

Absorptive characteristics of polyaniline synthesized in mixture of water and acetonitrile in 50/50 volume ratio was studied. Synthesized polyaniline in powder shape is used as an adsorbent to remove toxic hexavalent chromium from aqueous solutions. Experiments were conducted in batch mode with different variables such as agitation time, solution pH and initial concentration of hexavalent chromium. Removal mechanism is the combination of surface adsorption and reduction. The equilibrium time for removal of Cr(T) and Cr(VI) was about 2 and 10 minutes respectively. The optimum pH for total chromium removal occurred at pH 7 and maximum hexavalent chromium removal took place under acidic condition at pH 3. Investigating the isothermal characteristics showed that the equilibrium adsorption data fitted both Freundlich-s and Langmuir-s isotherms. The maximum adsorption of chromium was calculated 36.1 mg/g for polyaniline

Keywords: Polyaniline, Chromium, acetonitrile, Adsorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
941 Release Management with Continuous Delivery: A Case Study

Authors: A. Maruf Aytekin

Abstract:

We present our approach on using continuous delivery pattern for release management. One of the key practices of agile and lean teams is the continuous delivery of new features to stakeholders. The main benefits of this approach lie in the ability to release new applications rapidly which has real strategic impact on the competitive advantage of an organization. Organizations that successfully implement Continuous Delivery have the ability to evolve rapidly to support innovation, provide stable and reliable software in more efficient ways, decrease the amount of resources need for maintenance, and lower the software delivery time and costs. One of the objectives of this paper is to elaborate a case study where IT division of Central Securities Depository Institution (MKK) of Turkey apply Continuous Delivery pattern to improve release management process.

Keywords: Automation, continuous delivery, deployment, release management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5411
940 A DOE Study of Ultrasound Intensified Removal of Phenol

Authors: P. R. Rahul, A. Kannan

Abstract:

Ultrasound-aided adsorption of phenol by Granular Activated Carbon (GAC) was investigated at different frequencies ranging from 35 kHz, 58 kHz, and 192 kHz. Other factors influencing adsorption such as Adsorbent dosage (g/L), the initial concentration of the phenol solution (ppm) and RPM was also considered along with the frequency variable. However, this study involved calorimetric measurements which helped is determining the effect of frequency on the % removal of phenol from the power dissipated to the system was normalized. It was found that low frequency (35 kHz) cavitation effects had a profound influence on the % removal of phenol per unit power. This study also had cavitation mapping of the ultrasonic baths, and it showed that the effect of cavitation on the adsorption system is irrespective of the position of the vessel. Hence, the vessel was placed at the center of the bath. In this study, novel temperature control and monitoring system to make sure that the system is under proper condition while operations. From the BET studies, it was found that there was only 5% increase in the surface area and hence it was concluded that ultrasound doesn’t profoundly alter the equilibrium value of the adsorption system. DOE studies indicated that adsorbent dosage has a higher influence on the % removal in comparison with other factors.

Keywords: Ultrasound, adsorption, granulated activated carbon, phenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
939 Organoclay of Cetyl Trimethyl Ammonium- Montmorillonite: Preparation and Study in Adsorption of Benzene-Toluene-2-Chlorophenol

Authors: Is Fatimah, Winda Novita, Yopi Andika, Imam Sahroni, Basitoh Djaelani, Yuyun Yunani N.

Abstract:

Contamination of aromatic compounds in water can cause severe long-lasting effects not only for biotic organism but also on human health. Several alternative technologies for remediation of polluted water have been attempted. One of these is adsorption process of aromatic compounds by using organic modified clay mineral. Porous structure of clay is potential properties for molecular adsorptivity and it can be increased by immobilizing hydrophobic structure to attract organic compounds. In this work natural montmorillonite were modified with cetyltrimethylammonium (CTMA+) and was evaluated for use as adsorbents of aromatic compounds: benzene, toluene, and 2-chloro phenol in its single and multicomponent solution by ethanol:water solvent. Preparation of CTMA-montmorillonite was conducted by simple ion exchange procedure and characterization was conducted by using x-day diffraction (XRD), Fourier-transform infra red (FTIR) and gas sorption analysis. The influence of structural modification of montmorillonite on its adsorption capacity and adsorption affinity of organic compound were studied. It was shown that adsorptivity of montmorillonite was increased by modification associated with arrangements of CTMA+ in the structure even the specific surface area of modified montmorillonite was lower than raw montmorillonite. Adsorption rate indicated that material has affinity to adsorb compound by following order: benzene> toluene > 2-chloro phenol. The adsorption isotherms of benzene and toluene showed 1st order adsorption kinetic indicating a partition phenomenon of compounds between the aqueous and organophilic CTMAmontmorillonite.

Keywords: Adsorption, Desorption, Montmorillonite, Organoclay, Surfactant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
938 Removal of Methylene Blue from Aqueous Solution by Using Gypsum as a Low Cost Adsorbent

Authors: Muhammad A.Rauf, I.Shehadeh, Amal Ahmed, Ahmed Al-Zamly

Abstract:

Removal of Methylene Blue (MB) from aqueous solution by adsorbing it on Gypsum was investigated by batch method. The studies were conducted at 25°C and included the effects of pH and initial concentration of Methylene Blue. The adsorption data was analyzed by using the Langmuir, Freundlich and Tempkin isotherm models. The maximum monolayer adsorption capacity was found to be 36 mg of the dye per gram of gypsum. The data were also analyzed in terms of their kinetic behavior and was found to obey the pseudo second order equation.

Keywords: Adsorption, Dye, Gypsum, Kinetics, Methylene Blue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2623
937 Reduction of Content of Lead and Zinc from Wastewater by Using of Metallurgical Waste

Authors: L. Rozumová, J. Seidlerová

Abstract:

The aim of this paper was to study the sorption properties of a blast furnace sludge used as the sorbent. The sorbent was utilized for reduction of content of lead and zinc ions. Sorbent utilized in this work was obtained from metallurgical industry from process of wet gas treatment in iron production. The blast furnace sludge was characterized by X-Ray diffraction, scanning electron microscopy, and XRFS spectroscopy. Sorption experiments were conducted in batch mode. The sorption of metal ions in the sludge was determined by correlation of adsorption isotherm models. The adsorption of lead and zinc ions was best fitted with Langmuir adsorption isotherms. The adsorption capacity of lead and zinc ions was 53.8 mg.g-1 and 10.7 mg.g-1, respectively. The results indicated that blast furnace sludge could be effectively used as secondary material and could be also employed as a low-cost alternative for the removal of heavy metals ions from wastewater.

Keywords: Blast furnace sludge, lead, zinc, sorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
936 Waste Lubricating Oil Treatment by Adsorption Process Using Different Adsorbents

Authors: Nabil M. Abdel-Jabbar, Essam A.H. Al Zubaidy, Mehrab Mehrvar

Abstract:

Waste lubricating oil re-refining adsorption process by different adsorbent materials was investigated. Adsorbent materials such as oil adsorbent, egg shale powder, date palm kernel powder, and acid activated date palm kernel powder were used. The adsorption process over fixed amount of adsorbent at ambient conditions was investigated. The adsorption/extraction process was able to deposit the asphaltenic and metallic contaminants from the waste oil to lower values. It was found that the date palm kernel powder with contact time of 4 h was able to give the best conditions for treating the waste oil. The recovered solvent could be also reused. It was also found that the activated bentonite gave the best physical properties followed by the date palm kernel powder.

Keywords: activated bentonite, egg shale powder, datepalm kernel powder, used oil treatment, used oilcharacteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3779
935 Are PEG Molecules a Universal Protein Repellent?

Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison

Abstract:

Poly (ethylene glycol) (PEG) molecules attached to surfaces have shown high potential as a protein repellent due to their flexibility and highly water solubility. A quartz crystal microbalance recording frequency and dissipation changes (QCM-D) has been used to study the adsorption from aqueous solutions, of lysozyme and α-lactalbumin proteins (the last with and without calcium) onto modified stainless steel surfaces. Surfaces were coated with poly(ethylene imine) (PEI) and silicate before grafting on PEG molecules. Protein adsorption was also performed on the bare stainless steel surface as a control. All adsorptions were conducted at 23°C and pH 7.2. The results showed that the presence of PEG molecules significantly reduced the adsorption of lysozyme and α- lactalbumin (with calcium) onto the stainless steel surface. By contrast, and unexpected, PEG molecules enhanced the adsorption of α-lactalbumin (without calcium). It is suggested that the PEG -α- lactalbumin hydrophobic interaction plays a dominant role which leads to protein aggregation at the surface for this latter observation. The findings also lead to the general conclusion that PEG molecules are not a universal protein repellent. PEG-on-PEI surfaces were better at inhibiting the adsorption of lysozyme and α-lactalbumin (with calcium) than with PEG-on-silicate surfaces.

Keywords: Stainless steel, PEG, QCM-D, protein, PEI layer, silicate layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
934 Solar-Powered Adsorption Cooling System: A Case Study on the Climatic Conditions of Al Minya

Authors: El-Sadek H. Nour El-deen, K. Harby

Abstract:

Energy saving and environment friendly applications are turning out to be one of the most important topics nowadays. In this work, a simulation analysis using TRNSYS software has been carried out to study the benefit of employing a solar adsorption cooling system under the climatic conditions of Al-Minya city, Egypt. A theoretical model was carried out on a two bed adsorption cooling system employing granular activated carbon-HFC-404A as working pair. Temporal and averaged history of solar collector, adsorbent beds, evaporator and condenser has been shown. System performance in terms of daily average cooling capacity and average coefficient of performance around the year has been investigated. The results showed that maximum yearly average coefficient of performance (COP) and cooling capacity are about 0.26 and 8 kW respectively. The maximum value of the both average cooling capacity and COP cyclic is directly proportional to the maximum solar radiation. The system performance was found to be increased with the average ambient temperature. Finally, the proposed solar powered adsorption cooling systems can be used effectively under Al-Minya climatic conditions.

Keywords: Adsorption, solar energy, environment, cooling, Egypt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125
933 The Purification of Waste Printing Developer with the Fixed Bed Adsorption Column

Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Kecić S. Vesna, Oros B. Ivana

Abstract:

The present study investigates the effectiveness of newly designed clayey pellets (fired clay pellets diameter sizes of 5 and 8 mm, and unfired clay pellets with the diameter size of 15 mm) as the beds in the column adsorption process. The adsorption experiments in the batch mode were performed before the column experiment with the purpose to determine the order of adsorbent package in the column which was to be designed in the investigation. The column experiment was performed by using a known mass of the clayey beds and the volume of the waste printing developer, which was purified. The column was filled in the following order: fired clay pellets of the diameter size of 5 mm, fired clay pellets of the diameter size of 8 mm, and unfired clay pellets of the diameter size of 15 mm. The selected order of the adsorbents showed a high removal efficiency for zinc (97.8%) and copper (81.5%) ions. These efficiencies were better than those in the case of the already existing mode adsorption. The obtained experimental data present a good basis for the selection of an appropriate column fill, but further testing is necessary in order to obtain more accurate results.

Keywords: Clay materials, fix bed adsorption column, metal ions, printing developer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
932 Removal of Textile Dye from Industrial Wastewater by Natural and Modified Diatomite

Authors: Hakim Aguedal, Abdelkader Iddou, Abdallah Aziz, Djillali Reda Merouani, Ferhat Bensaleh, Saleh Bensadek

Abstract:

The textile industry produces high amount of colored effluent each year. The management or treatment of these discharges depends on the applied techniques. Adsorption is one of wastewater treatment techniques destined to treat this kind of pollution, and the performance and efficiency predominantly depend on the nature of the adsorbent used. Therefore, scientific research is directed towards the development of new materials using different physical and chemical treatments to improve their adsorption capacities. In the same perspective, we looked at the effect of the heat treatment on the effectiveness of diatomite, which is found in abundance in Algeria. The textile dye Orange Bezaktiv (SRL-150) which is used as organic pollutants in this study is provided by the textile company SOITEXHAM in Oran city (west Algeria). The effect of different physicochemical parameters on the adsorption of SRL-150 on natural and modified diatomite is studied, and the results of the kinetics and adsorption isotherms were modeled.

Keywords: Wastewater treatment, diatomite, adsorption, dye pollution, kinetic, Isotherm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
931 Adsorption of Cadmium onto Activated and Non-Activated Date Pits

Authors: Munther I. Kandah, Fahmi A. Abu Al-Rub, Lucy Bawarish, Mira Bawarish, Hiba Al-Tamimi, Reem Khalil, Raja'a Sa, ada

Abstract:

In this project cadmium ions were adsorbed from aqueous solutions onto either date pits; a cheap agricultural and nontoxic material, or chemically activated carbon prepared from date pits using phosphoric acid. A series of experiments were conducted in a batch adsorption technique to assess the feasibility of using the prepared adsorbents. The effects of the process variables such as initial cadmium ions concentration, contact time, solution pH and adsorbent dose on the adsorption capacity of both adsorbents were studied. The experimental data were tested using different isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin- Radushkevich. The results showed that although the equilibrium data could be described by all models used, Langmuir model gave slightly better results when using activated carbon while Freundlich model, gave better results with date pits.

Keywords: Adsorption, Cadmium, Chemical Activation, DatePits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
930 The Statistical Significant of Adsorbents for Effective Zn (II) Ions Removal

Authors: Kiurski S. Jelena, Oros B. Ivana, Kecić S. Vesna, Kovačević M. Ilija, Aksentijević M. Snežana

Abstract:

The adsorption efficiency of various adsorbents for the removal of Zn(II) ions from the waste printing developer was studied in laboratory batch mode. The maximum adsorption efficiency of 94.1% was achieved with unfired clay pellets size (d ≈ 15 mm). The obtained values of adsorption efficiency was subjected to the independent-samples t test in order to investigate the statistically significant differences of the investigated adsorbents for the effective removal of Zn(II) ions from the waste printing developer. The most statistically significant differences of adsorption efficiencies for Zn(II) ions removal were obtained between unfired clay pellets (size d ≈ 15 mm) and activated carbon (½t½=6.909), natural zeolite (½t½=10.380), mixture of activated carbon and natural zeolite (½t½=9.865), bentonite (½t½=6.159), fired clay (½t½=6.641), fired clay pellets (size d ≈ 5 mm) (½t½=6.678), fired clay pellets (size d ≈ 8 mm) (½t½=3.422), respectively.

Keywords: Adsorbent, adsorption efficiency, statistical analysis, zinc ion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
929 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling

Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar

Abstract:

The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.

Keywords: Lead, zinc heavy metal, activated clay, kinetic study, competitive adsorption, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
928 Equilibrium, Kinetics and Thermodynamic Studies for Adsorption of Hg (II) on Palm Shell Powder

Authors: Shilpi Kushwaha, Suparna Sodaye, P. Padmaja

Abstract:

Palm shell obtained from coastal part of southern India was studied for the removal for the adsorption of Hg (II) ions. Batch adsorption experiments were carried out as a function of pH, concentration of Hg (II) ions, time, temperature and adsorbent dose. Maximum removal was seen in the range pH 4.0- pH 7.0. The palm shell powder used as adsorbent was characterized for its surface area, SEM, PXRD, FTIR, ion exchange capacity, moisture content, and bulk density, soluble content in water and acid and pH. The experimental results were analyzed using Langmuir I, II, III, IV and Freundlich adsorption isotherms. The batch sorption kinetics was studied for the first order reversible reaction, pseudo first order; pseudo second order reaction and the intra-particle diffusion reaction. The biomass was successfully used for removal Hg (II) from synthetic and industrial effluents and the technique appears industrially applicable and viable.

Keywords: Biosorbent, mercury removal, borassus flabellifer, isotherms, kinetics, palm shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
927 Application of Synthetic Monomers Grafted Xanthan Gum for Rhodamine B Removal in Aqueous Solution

Authors: T. Moremedi, L. Katata-Seru, S. Sardar, A. Bandyopadhyay, E. Makhado, M. Joseph Hato

Abstract:

The rapid industrialisation and population growth have led to a steady fall in freshwater supplies worldwide. As a result, water systems are affected by modern methods upon use due to secondary contamination. The application of novel adsorbents derived from natural polymer holds a great promise in addressing challenges in water treatment. In this study, the UV irradiation technique was used to prepare acrylamide (AAm) monomer, and acrylic acid (AA) monomer grafted xanthan gum (XG) copolymer. Furthermore, the factors affecting rhodamine B (RhB) adsorption from aqueous media, such as pH, dosage, concentration, and time were also investigated. The FTIR results confirmed the formation of graft copolymer by the strong vibrational bands at 1709 cm-1 and 1612 cm-1 for AA and AAm, respectively. Additionally, more irregular, porous and wrinkled surface observed from SEM of XG-g-AAm/AA indicated copolymerization interaction of monomers. The optimum conditions for removing RhB dye with a maximum adsorption capacity of 313 mg/g at 25 0C from aqueous solution were pH approximately 5, initial dye concentration = 200 ppm, adsorbent dose = 30 mg. Also, the detailed investigation of the isothermal and adsorption kinetics of RhB from aqueous solution showed that the adsorption of the dye followed a Freundlich model (R2 = 0.96333) and pseudo-second-order kinetics. The results further indicated that this absorbent based on XG had the universality to remove dye through the mechanism of chemical adsorption. The outstanding adsorption potential of the grafted copolymer could be used to remove cationic dyes from aqueous solution as a low-cost product.

Keywords: Xanthan gum, adsorbents, rhodamine B, Freundlich model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 580
926 Carbon Dioxide Capture and Storage: A General Review on Adsorbents

Authors: Mohammad Songolzadeh, Maryam Takht Ravanchi, Mansooreh Soleimani

Abstract:

CO2 is the primary anthropogenic greenhouse gas, accounting for 77% of the human contribution to the greenhouse effect in 2004. In the recent years, global concentration of CO2 in the atmosphere is increasing rapidly. CO2 emissions have an impact on global climate change. Anthropogenic CO2 is emitted primarily from fossil fuel combustion. Carbon capture and storage (CCS) is one option for reducing CO2 emissions. There are three major approaches for CCS: post-combustion capture, pre-combustion capture and oxyfuel process. Post-combustion capture offers some advantages as existing combustion technologies can still be used without radical changes on them. There are several post combustion gas separation and capture technologies being investigated, namely; (a) absorption, (b) cryogenic separation, (c) membrane separation (d) micro algal biofixation and (e) adsorption. Apart from establishing new techniques, the exploration of capture materials with high separation performance and low capital cost are paramount importance. However, the application of adsorption from either technology, require easily regenerable and durable adsorbents with a high CO2 adsorption capacity. It has recently been reported that the cost of the CO2 capture can be reduced by using this technology. In this paper, the research progress (from experimental results) in adsorbents for CO2 adsorption, storage, and separations were reviewed and future research directions were suggested as well.

Keywords: Carbon capture and storage, pre-combustion, postcombustion, adsorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7122
925 Adsorption of Phenolic Compounds on Activated Carbon DSAC36-24

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi, Dhananjay R. Mishra, Ammar Houas

Abstract:

Activated carbon DSAC36-24 iy is adsorbent materials, characterized by a specific surface area of 548.13 m²g⁻¹. Their manufacture uses the natural raw materials like the nucleus of dates. In this study the treatment is done in two stages: A chemical treatment by H3PO4 followed by a physical treatment under nitrogen for 1 hour then under stream of CO2 for 24 hours. A characterization of the various parameters was determined such as the measurement of the specific surface area, determination of pHPZC, bulk density, iodine value. The study of the adsorption of organic molecules (hydroquinone, paranitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol) indicates that the adsorption phenomena are essentially due to the van der Waals interaction. In the case of organic molecules carrying the polar substituents, the existence of hydrogen bonds is also proved by the donor-acceptor forces. The study of the pH effect was done with modeling by different models (Langmuir, Freundlich, Langmuir-Freundlich, Redlich-Peterson), a kinetic treatment is also followed by the application of Lagergren, Weber, Macky.

Keywords: DSAC36-24, organic molecule, adsoprtion ishoterms, adsorption kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
924 On Uniqueness and Continuous Dependence in the Theory of Micropolar Thermoelastic Mixtures

Authors: Catalin Gales, Ionel Dumitrel Ghiba

Abstract:

This paper studies questions of continuous data dependence and uniqueness for solutions of initial boundary value problems in linear micropolar thermoelastic mixtures. Logarithmic convexity arguments are used to establish results with no definiteness assumptions upon the internal energy.

Keywords: Cellular materials, continuous dependence, micro polar mixtures, uniqueness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
923 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye

Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari

Abstract:

Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.

Keywords: Chitosan, clay, dye adsorption, hydrogels nanocomposites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
922 Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2

Authors: Peter G. Youssef, Saad M. Mahmoud, Raya K. Al-Dadah

Abstract:

Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications.

Keywords: Adsorption, desalination, refrigeration, seawater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435
921 The Surface Adsorption of Nano-pore Template

Authors: M. J. Kao, S.F. Chang, C.C. Chen, C.G. Kuo

Abstract:

This paper aims to fabricated high quality anodic aluminum oxide (AAO) film by anodization method. AAO pore size, pore density, and film thickness can be controlled in 10~500 nm, 108~1011 pore.cm-2, and 1~100 μm. AAO volume and surface area can be computed based on structural parameters such as thickness, pore size, pore density, and sample size. Base on the thetorical calculation, AAO has 100 μm thickness with 15 nm, 60 nm, and 500 nm pore diameters AAO surface areas are 1225.2 cm2, 3204.4 cm2, and 549.7 cm2, respectively. The large unit surface area which is useful for adsorption application. When AAO adsorbed pH indictor of bromphenol blue presented a sensitive pH detection of solution change. This testing method can further be used for the precise measurement of biotechnology, convenience measurement of industrial engineering.

Keywords: AAO, Pore, Surface area, Adsorption, Indicator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
920 Removal of Heavy Metals from Wastewater by Adsorption and Membrane Processes: a Comparative Study

Authors: Nermen N. Maximous, George F. Nakhla, W. K. Wan

Abstract:

This research aimed at investigating the Cr (III), Cd (II) and Pb (II) removal efficiencies by using the newly synthesized metal oxides/ polyethersulfone (PES), Al2O3/PES and ZrO2/PES, membranes from synthetic wastewater and exploring fouling mechanisms. A Comparative study between the removal efficiencies of Cr (III), Cd (II) and Pb (II) from synthetic and natural wastewater by using adsorption onto agricultural by products and the newly synthesized Al2O3/PES and ZrO2/PES membranes was conducted to assess the advantages and limitations of using the metal oxides/PES membranes for heavy metals removal. The results showed that about 99 % and 88 % removal efficiencies were achieved by the tested membranes for Pb (II) and Cr (III), respectively.

Keywords: Adsorption, metals removal, ultrafiltrationmembranes, wastewater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5631