WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/804,
	  title     = {Organoclay of Cetyl Trimethyl Ammonium- Montmorillonite: Preparation and Study in Adsorption of Benzene-Toluene-2-Chlorophenol},
	  author    = {Is Fatimah and  Winda Novita and  Yopi Andika and  Imam Sahroni and  Basitoh Djaelani and  Yuyun Yunani N.},
	  country	= {},
	  institution	= {},
	  abstract     = {Contamination of aromatic compounds in water can
cause severe long-lasting effects not only for biotic organism but also
on human health. Several alternative technologies for remediation of
polluted water have been attempted. One of these is adsorption
process of aromatic compounds by using organic modified clay
mineral. Porous structure of clay is potential properties for molecular
adsorptivity and it can be increased by immobilizing hydrophobic
structure to attract organic compounds. In this work natural
montmorillonite were modified with cetyltrimethylammonium
(CTMA+) and was evaluated for use as adsorbents of aromatic
compounds: benzene, toluene, and 2-chloro phenol in its single and
multicomponent solution by ethanol:water solvent. Preparation of
CTMA-montmorillonite was conducted by simple ion exchange
procedure and characterization was conducted by using x-day
diffraction (XRD), Fourier-transform infra red (FTIR) and gas
sorption analysis. The influence of structural modification of
montmorillonite on its adsorption capacity and adsorption affinity of
organic compound were studied. It was shown that adsorptivity of
montmorillonite was increased by modification associated with
arrangements of CTMA+ in the structure even the specific surface
area of modified montmorillonite was lower than raw
montmorillonite. Adsorption rate indicated that material has affinity
to adsorb compound by following order: benzene> toluene > 2-chloro
phenol. The adsorption isotherms of benzene and toluene showed 1st
order adsorption kinetic indicating a partition phenomenon of
compounds between the aqueous and organophilic CTMAmontmorillonite.},
	    journal   = {International Journal of Chemical and Molecular Engineering},
	  volume    = {7},
	  number    = {6},
	  year      = {2013},
	  pages     = {389 - 392},
	  ee        = {https://publications.waset.org/pdf/804},
	  url   	= {https://publications.waset.org/vol/78},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 78, 2013},
	}