GIC-Based Adsorbents for Wastewater Treatment through Adsorption and Electrochemical-Regeneration
Authors: H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, N. W. Brown, H. Sattar
Abstract:
Intercalation imparts interesting features to the host graphite material. Two different types of intercalated compounds called (GIC-bisulphate or Nyex 1000 and GIC-nitrate or Nyex 3000) were tested for their adsorption capacity and ability to undergo electrochemical regeneration. It was found that Nyex 3000 showed comparatively slow kinetics along with reduced adsorption capacity to one half for acid violet 17 as adsorbate. Acid violet 17 was selected as model organic pollutant for evaluating comparative performance of said adsorbents. Both adsorbent materials showed 100% regeneration efficiency as achieved by passing a charge of 36 C g-1 at a current density of 12 mA cm-2 and a treatment time of 60 min.
Keywords: Intercalation compound of graphite, Adsorption, electrochemical-regeneration, waste water.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087658
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4063References:
[1] O. J. H. Hao & P.C. Chiang (2000) Decolorization of wastewater. Critical Review, Environmental Science Technology, Vol. 30 (4) pp. 449–505.
[2] S. M. Ghoreishi & R. Haghighi (2003) Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chemical Engineering Journal, Vol. 95 pp. 163–169
[3] N. Capalash & P. Sharma (1992) Bio-degradation of textile azo-dyes by phane-rochaete chrysosporium. World journal of microbiology and biotechnology, Vol. 8 pp. 309–312.
[4] F. C. Z. A. Abidin & N. R. Rehmat (2010) Multistage ozonation and biological treatment for removal of azo-dye industrial effluent. International journal of environmental science and development, Vol. 1 (2) pp. 193-198
[5] K. K. Robinson & J. L. Jens (1990) Granulated activated carbon for water treatment. United States Patent 4954469
[6] A. L. Barros, T. M. Pizzolato, E. Carrisimi & I. A. H. Schneider (2006) Decolorizing dye waste water from the agate industry with fenton oxidation process. Minerals engineering, Vol. 19 pp. 87-90
[7] T. M. Pizzolato, E. Carissimi, E. L. Machado & I. A. H. Schneider (2002) Color removal with NaClO of dye waste water from an agateprocessing plant in Rio Grande do Sul, Brazil. International journal of mineral processing, Vol. 65 pp. 203-211
[8] I. Arslan, I. A. Balcioglu & D. W. Bahnemman (2000) Advanced chemical oxidation of reactive dyes in simulated dye-house effluents by ferrioxalated fenton/ UV-A and TiO2/UA-A processes. Dyes and pigments, Vol. 47 pp. 207-218
[9] N. W. Brown, E. P. L. Roberts, A. A. Garforth & R. A. W. Dryfe (2004) Treatment of dye house effluents with carbon based adsorbent using anodic oxidation regeneration. Water Science and Technology, Vol. 49 (4) pp. 219–225.
[10] N. W. Brown, E. P. L. Roberts, A. Chasiotis, T. Cherdron & N. Sanghrajaka (2004) Atrazine removal using adsorption and electrochemical regeneration.Water Research, Vol. 38 pp. 3067–3074.
[11] N. W. Brown, E. P. L. Roberts, A. A. Garforth & R. A. W. Dryfe (2004) Electrochemical regeneration of a carbon based adsorbent loaded with crystal violet dye. Electrochimica Acta, Vol. 49 pp. 3269–3281.
[12] N. W. Brown & E. P. L. Roberts (2007) Electrochemical pre–treatment of effluents containing chlorinated compounds using an adsorbent. Journal of Applied Electrochemistry, Vol. 37 (11) pp. 1329 – 1335.
[13] M. M. Fadhil, E. P. L. Roberts, A. K. Campen & N. W. Brown (2012) Waste-water treatment by multi-stage batch adsorption and electrochemical regeneration. Journal of electrochemical science and engineering, doi: 10.5599/jese.2012.0019
[14] M. G. Conti-ramsdon, H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts & N. W. Brown (2012) Removal of mercaptans from gas stream using continuous adsorption-regeneration. Water science and technology, Vol. 66 (9) pp.1849-1855
[15] S. N. Hussain, E. P. L. Roberts, H. M. A. Asghar, A. K. Campen & N.W. Brown (2013) Oxidation of phenol and adsorption of breakdown products using a graphite adsorbent with electrochemical regeneration. Electrochimica acta, Vol. 92 pp.20-30
[16] S. N. Hussain, H. M. A. Asghar, A. K. Campen, N. W. Brown & E. P. L. Roberts (2013) Break down products formed due to oxidation of adsorbed phenol by electrochemical regeneration of a graphite adsorbent. Electrochimica acta. Doi: jelectacta.2013.03.017
[17] H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, A. K. Campen & N. W. Brown (2013) Pre-treatment of adsorbents for wastewater treatment using adsorption coupled with electrochemical regeneration. Journal of industrial engineering and chemistry, doi: 10.1016/j.jiec 2013.02.007
[18] H. M. A. Asghar, E. P. L. Roberts, S. N. Hussain, A. K. Campen & N. W. Brown (2012) Wastewater treatment using adsorption and electrochemical regeneration using graphite based adsorbents. Journal of applied electrochemistry, Vol. 42(9) pp. 797-807
[19] R. M. Narbaitz & J. Cen (1994). Electrochemical regeneration of granular activated carbon. Water Research, Vol. 28 (8) pp. 1771–1778.
[20] M. H. Zho & L. C. Lei (2006) Electrochemical regeneration of activated carbon loaded with p-nitro phenol in a fluidized electrochemical reactor. Electrochimica acta, Vol. 51 pp.4489-4496
[21] H. M. A. Asghar (2011) Development of graphitic adsorbents for wastewater treatment using adsorption and electrochemical regeneration. PhD thesis, submitted to the University of Manchester, UK.
[22] H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, N. W. Brown & H. Sattar (2012). Development of composite adsorbent for wastewater treatment using adsorption and electrochemical regeneration. Proceedings of the world academy of science, engineering & technology, 72 2012.