Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30455
Application of Synthetic Monomers Grafted Xanthan Gum for Rhodamine B Removal in Aqueous Solution

Authors: A. Bandyopadhyay, T. Moremedi, L. Katata-Seru, S. Sardar, E. Makhado, M. Joseph Hato

Abstract:

The rapid industrialisation and population growth have led to a steady fall in freshwater supplies worldwide. As a result, water systems are affected by modern methods upon use due to secondary contamination. The application of novel adsorbents derived from natural polymer holds a great promise in addressing challenges in water treatment. In this study, the UV irradiation technique was used to prepare acrylamide (AAm) monomer, and acrylic acid (AA) monomer grafted xanthan gum (XG) copolymer. Furthermore, the factors affecting rhodamine B (RhB) adsorption from aqueous media, such as pH, dosage, concentration, and time were also investigated. The FTIR results confirmed the formation of graft copolymer by the strong vibrational bands at 1709 cm-1 and 1612 cm-1 for AA and AAm, respectively. Additionally, more irregular, porous and wrinkled surface observed from SEM of XG-g-AAm/AA indicated copolymerization interaction of monomers. The optimum conditions for removing RhB dye with a maximum adsorption capacity of 313 mg/g at 25 0C from aqueous solution were pH approximately 5, initial dye concentration = 200 ppm, adsorbent dose = 30 mg. Also, the detailed investigation of the isothermal and adsorption kinetics of RhB from aqueous solution showed that the adsorption of the dye followed a Freundlich model (R2 = 0.96333) and pseudo-second-order kinetics. The results further indicated that this absorbent based on XG had the universality to remove dye through the mechanism of chemical adsorption. The outstanding adsorption potential of the grafted copolymer could be used to remove cationic dyes from aqueous solution as a low-cost product.

Keywords: adsorbents, rhodamine B, xanthan gum, Freundlich model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35

References:


[1] M. T. Uddin, M. A. Rahman, M. Rukanuzzaman, M. A. Islam, Applied Water Science 2017, 7, 2831-2842.
[2] Y. Jiang, B. Liu, J. Xu, K. Pan, H. Hou, J. Hu, J. Yang, Carbohydrate polymers 2018, 182, 106-114.
[3] X. Zhao, L. Lv, B. Pan, W. Zhang, S. Zhang, Q. Zhang, Chemical engineering journal 2011, 170, 381-394.
[4] L. Dehabadi, L. D. Wilson, Carbohydrate polymers 2014, 113, 471-479.
[5] M. R. Guilherme, F. A. Aouada, A. R. Fajardo, A. F. Martins, A. T. Paulino, M. F. Davi, A. F. Rubira, E. C. Muniz, European Polymer Journal 2015, 72, 365-385.
[6] Y. Zheng, J. Monty, R. J. Linhardt, Carbohydrate research 2015, 405, 23-32.
[7] D. F. Petri, Journal of Applied Polymer Science 2015, 132.
[8] B. d. M. Lopes, V. L. Lessa, B. M. Silva, L. G. La Cerda, J Food Nutr Res 2015, 54, 185-194.
[9] M. N. Hazirah, M. Isa, N. Sarbon, Food Packaging and Shelf Life 2016, 9, 55-63.
[10] M. H. A. Elella, M. W. Sabaa, E. A. ElHafeez, R. R. Mohamed, International journal of biological macromolecules 2019, 137, 1086-1101.
[11] G. Sharma, M. Naushad, D. Pathania, A. Mittal, G. El-Desoky, Desalination and Water Treatment 2015, 54, 3114-3121.
[12] M. Bhabhe, P. Galvankar, V. Desai, V. Athawale, Journal of applied polymer science 1995, 56, 485-494.
[13] R. C. Mundargi, S. A. Patil, T. M. Aminabhavi, Carbohydrate Polymers 2007, 69, 130-141.
[14] R. Xu, M. Jia, Y. Zhang, F. Li, Microporous and Mesoporous Materials 2012, 149, 111-118.
[15] A. Guleria, G. Kumari, E. C. Lima, Carbohydrate polymers 2020, 228, 115396.
[16] A. Pal, K. Majumder, A. Bandyopadhyay, Carbohydrate polymers 2016, 152, 41-50.
[17] S. K. Lagergren, Sven. Vetenskapsakad. Handingarl 1898, 24, 1-39.
[18] Y.-S. Ho, G. McKay, Process biochemistry 1999, 34, 451-465.
[19] W. J. Weber, J. C. Morris, Journal of the Sanitary Engineering Division 1963, 89, 31-60.
[20] M. Temkin, V. Pyzhev, 1940.
[21] H. Freundlich, Chem, 1906.
[22] L. Su, W. Ji, W. Lan, X. Dong, Carbohydrate Polymers 2003, 53, 497-499.
[23] S. Pal, S. Ghorai, C. Das, S. Samrat, A. Ghosh, A. B. Panda, Industrial & Engineering Chemistry Research 2012, 51, 15546-15556.
[24] E. D. RaczyƄska, K. Duczmal, M. Darowska, vibrational Spectroscopy 2005, 39, 37-45.
[25] S. Thakur, S. Pandey, O. A. Arotiba, Carbohydrate polymers 2016, 153, 34-46.
[26] S. Kaur, R. Jindal, Materials Chemistry and Physics 2018, 220, 75-86.
[27] D. A. Bhagwat, V. R. Kolekar, S. J. Nadaf, P. B. Choudhari, H. N. More, S. G. Killedar, Carbohydrate Polymers 2020, 229, 115357.
[28] Y. Fang, A. Zhou, W. Yang, T. Araya, Y. Huang, P. Zhao, D. Johnson, J. Wang and Z.J. Ren, Scientific reports 2018., 8(1), 229.
[29] H.R. Badwaik, K. Sakure, A. Alexander, H. Dhongade. and D.K. Tripathi, International journal of biological macromolecules 2016, 85,.361-369.
[30] X. T. Le, S. L. Turgeon, Soft Matter 2013, 9, 3063-3073.
[31] Y. Tang, T. He, Y. Liu, B. Zhou, R. Yang, L. Zhu, Advances in Polymer Technology 2018, 37, 2568-2578.
[32] A. Thakur, H. Kaur, International Journal of Industrial Chemistry 2017, 8, 175-186.
[33] N. B. Shukla, G. Madras, Journal of Applied Polymer Science 2012, 124, 3892-3899.
[34] H. Mittal, V. Kumar, S. M. Alhassan, S. S. Ray, International journal of biological macromolecules 2018, 114, 283-294.
[35] D. L. Postai, C. A. Demarchi, F. Zanatta, D. C. C. Melo, C. A. Rodrigues, Alexandria Engineering Journal 2016, 55, 1713-1723.