Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
On Uniqueness and Continuous Dependence in the Theory of Micropolar Thermoelastic Mixtures

Authors: Catalin Gales, Ionel Dumitrel Ghiba

Abstract:

This paper studies questions of continuous data dependence and uniqueness for solutions of initial boundary value problems in linear micropolar thermoelastic mixtures. Logarithmic convexity arguments are used to establish results with no definiteness assumptions upon the internal energy.

Keywords: Cellular materials, continuous dependence, micro polar mixtures, uniqueness.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1328370

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377

References:


[1] Twiss, R.J., Eringen, A.C., Theory of mixtures for micromorphic materials, I. Int. J. Engng. Sci., Vol. 9, 1019-1044, 1971.
[2] Twiss, R.J., Eringen, A.C., Theory of mixtures for micromorphic materials. II., Elastic constitutive equations, Int. J. Engng. Sci., Vol. 10, 437-465, 1972.
[3] Eringen A.C., Micropolar mixture theory of porous media, Journal of Applied Physics, Vol. 94, 4184-4190, 2003.
[4] Eringen A.C., A mixture theory for geophysical fluids, Nonlinear Process in Geophysics, Vol. 11, 75-82, 2004.
[5] de Boer, R., Trends in continuum mechanics of porous media, Springer, 2005.
[6] Eringen A.C., Microcontinuum field theories. Foundations and solids, Springer, New York, 1999.
[7] Elangovan S., Altan B.S., Odegard G.M., An elastic micropolar mixture theory for predicting elastic properties of cellular materials, Mech. Mater., Vol. 40, 602-614, 2008.
[8] Ghiba I.D., Some uniqueness and continuous dependence results in the micropolar mixture theory of porous media, Int. J. Eng. Sci., Vol. 44, 1269-1279, 2006.
[9] Ghiba I.D., Some uniqueness and stability results in the theory of micropolar soli-fluid mixture, J. Math. Anal. Appl., Vol. 355, 385-396, 2009.
[10] D. Ies┬©an, On the Theory of Mixtures of Thermoelastic Solids, J. Thermal Stresses, Vol. 14, 389-408, 1991.
[11] D. Ies┬©an, On the Theory of Viscoelastic Mixtures, J. Theermal Stresses, Vol. 27, 1125-1148, 2004.
[12] Ies┬©an, D., On the theory of viscoelastic mixtures, J. Thermal Stresses, Vol. 27, 1125-1148, 2004.
[13] Ies┬©an, D., A theory of thermoviscoelastic composites modelled as interacting Cosserat continua, J. Thermal Stresses, Vol. 30, 1269-1289, 2007.
[14] Gales┬©, C., A mixture theory for micropolar thermoelastic solids, Mathematical Problems in Engineering, Vol. 2007, Article ID 90672, 21 pages, 2007.
[15] Chirit┬©╦ÿa, S., Gales┬©, C., A mixture theory for microstretch thermoviscoelastic solids, Journal of Thermal Stresses, Vol. 31, 1099-1124, 2008.
[16] Gales┬©, C., Some results in the dynamics of viscoelastic mixtures, Math. Mech. Solids, Vol. 13, 124-147, 2008.
[17] Knops, R.J. and Payne, L.E, Continuous data dependence for the equations of classical elastodynamics, Proc. Camb. Phil. Soc., Vol. 66, 481-491, 1969.
[18] Knops, R.J. and Payne, L.E, On uniqueness and continuous dependence in dynamical problems of linear thermoelasticity, Int. J. Solids Struct., Vol. 6, 1173-1184, 1970.
[19] Chirit┬©╦ÿa, S. and Rionero, S., Lagrange identity in linear viscoelasticity, Int. J. Engng Sci., Vol. 29, 1181-1200, 1991.