%0 Journal Article
	%A Gulnaziya Issabayeva and  Mohamed Kheireddine Aroua
	%D 2011
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 52, 2011
	%T Removal of Copper and Zinc Ions onto Biomodified Palm Shell Activated Carbon
	%U https://publications.waset.org/pdf/5840
	%V 52
	%X commercially produced in Malaysia granular
palm shell activated carbon (PSAC) was biomodified with
bacterial biomass (Bacillus subtilis) to produce a hybrid
biosorbent of higher efficiency. The obtained biosorbent was
evaluated in terms of adsorption capacity to remove copper
and zinc metal ions from aqueous solutions. The adsorption
capacity was evaluated in batch adsorption experiments where
concentrations of metal ions varied from 20 to 350 mg/L. A
range of pH from 3 to 6 of aqueous solutions containing metal
ions was tested. Langmuir adsorption model was used to
interpret the experimental data. Comparison of the adsorption
data of the biomodified and original palm shell activated
carbon showed higher uptake of metal ions by the hybrid
biosorbent. A trend in metal ions uptake increase with the
increase in the solution-s pH was observed. The surface
characterization data indicated a decrease in the total surface
area for the hybrid biosorbent; however the uptake of copper
and zinc by it was at least equal to the original PSAC at pH 4
and 5. The highest capacity of the hybrid biosorbent was
observed at pH 5 and comprised 22 mg/g and 19 mg/g for
copper and zinc, respectively. The adsorption capacity at the
lowest pH of 3 was significantly low. The experimental results
facilitated identification of potential factors influencing the
adsorption of copper and zinc onto biomodified and original
palm shell activated carbon.
	%P 276 - 279