Search results for: contact pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1758

Search results for: contact pressure

1668 Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow

Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim

Abstract:

Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.

Keywords: Constriction, pressure drop, turbulence, water cut, water-in-oil emulsions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
1667 Scaling Strategy of a New Experimental Rig for Wheel-Rail Contact

Authors: Meysam Naeimi, Zili Li, Rolf Dollevoet

Abstract:

A new small–scale test rig developed for rolling contact fatigue (RCF) investigations in wheel–rail material. This paper presents the scaling strategy of the rig based on dimensional analysis and mechanical modelling. The new experimental rig is indeed a spinning frame structure with multiple wheel components over a fixed rail-track ring, capable of simulating continuous wheelrail contact in a laboratory scale. This paper describes the dimensional design of the rig, to derive its overall scaling strategy and to determine the key elements’ specifications. Finite element (FE) modelling is used to simulate the mechanical behavior of the rig with two sample scale factors of 1/5 and 1/7. The results of FE models are compared with the actual railway system to observe the effectiveness of the chosen scales. The mechanical properties of the components and variables of the system are finally determined through the design process.

Keywords: New test rig, rolling contact fatigue, rail, small scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
1666 Influence of Static Pressure on Viability of Entomopathogenic Nematodes – Steinernema feltiae

Authors: J. Chojnacki, E. Dulcet, A. Grieger

Abstract:

The entomopathogenic nematodes Steinernema feltiaeare are components of many biological pesticides. The biological pesticides are applicated by means a spraying machines. The influence of high pressure operating time on viability of nematodes has been experimentally investigated in order to explain if static pressure inside of the sprayers installation was able to destroy nematodes. The value of pressure was 55 MPa and its maximum operating time was 3 hours. Changes were found in viability of pressurized samples of nematodes, mixed with water.

Keywords: Entomopathogenic nematodes, biopesticides, highpressure, sprayer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
1665 Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall

Authors: Snehal R. Pathak, Sachin S. Munnoli

Abstract:

Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.

Keywords: Earth pressure, earthquake, 2-DOF model, plaxis, wall movement, retaining walls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
1664 Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack

Authors: Na Li, Samuel Simon Araya, Søren Knudsen Kær

Abstract:

This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance.

Keywords: PEM electrolysis stack, current density, temperature, pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
1663 Phase Diagram Including a Negative Pressure Region for a Thermotropic Liquid Crystal in a Metal Berthelot Tube

Authors: K. Hiro, T. Wada

Abstract:

Thermodynamic properties of liquids under negative pressures are interesting and important in fields of scienceand technology. Here, phase transitions of a thermotropic liquid crystal are investigatedin a range from positive to negative pressures with a metal Berthelot tube using a commercial pressure transducer.Two co-existinglines, namely crystal (Kr) –nematic (N), and isotropic liquid (I) - nematic (N) lines, weredrawn in a pressure - temperature plane. The I-N line was drawn to ca. -5 (MPa).

Keywords: Berthelot method, liquid crystal, negative pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
1662 The Role of Velocity Map Quality in Estimation of Intravascular Pressure Distribution

Authors: Ali Pashaee, Parisa Shooshtari, Gholamreza Atae, Nasser Fatouraee

Abstract:

Phase-Contrast MR imaging methods are widely used for measurement of blood flow velocity components. Also there are some other tools such as CT and Ultrasound for velocity map detection in intravascular studies. These data are used in deriving flow characteristics. Some clinical applications are investigated which use pressure distribution in diagnosis of intravascular disorders such as vascular stenosis. In this paper an approach to the problem of measurement of intravascular pressure field by using velocity field obtained from flow images is proposed. The method presented in this paper uses an algorithm to calculate nonlinear equations of Navier- Stokes, assuming blood as an incompressible and Newtonian fluid. Flow images usually suffer the lack of spatial resolution. Our attempt is to consider the effect of spatial resolution on the pressure distribution estimated from this method. In order to achieve this aim, velocity map of a numerical phantom is derived at six different spatial resolutions. To determine the effects of vascular stenoses on pressure distribution, a stenotic phantom geometry is considered. A comparison between the pressure distribution obtained from the phantom and the pressure resulted from the algorithm is presented. In this regard we also compared the effects of collocated and staggered computational grids on the pressure distribution resulted from this algorithm.

Keywords: Flow imaging, pressure distribution estimation, phantom, resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1661 Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study

Authors: W. Hasan, H. Farhat

Abstract:

A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably.

Keywords: Lattice Boltzmann method, Gunstensen model, thermal, contact angle, high viscosity ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
1660 Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation

Authors: Ying-Chang Yu, Yuan-Lung Lo

Abstract:

Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future.

Keywords: Renault number, porous media, wind damping, wind tunnel test, building ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
1659 Analysis of Rail Ends under Wheel Contact Loading

Authors: Nannan Zong, Manicka Dhanasekar

Abstract:

The effect of the discontinuity of the rail ends and the presence of lower modulus insulation material at the gap to the variations of stresses in the insulated rail joint (IRJ) is presented. A three-dimensional wheel – rail contact model in the finite element framework is used for the analysis. It is shown that the maximum stress occurs in the subsurface of the railhead when the wheel contact occurs far away from the rail end and migrates to the railhead surface as the wheel approaches the rail end; under this condition, the interface between the rail ends and the insulation material has suffered significantly increased levels of stress concentration. The ratio of the elastic modulus of the railhead and insulation material is found to alter the levels of stress concentration. Numerical result indicates that a higher elastic modulus insulating material can reduce the stress concentration in the railhead but will generate higher stresses in the insulation material, leading to earlier failure of the insulation material

Keywords: Rail end, material interface, wheel-rail contact, stress, finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
1658 Resonant-Based Capacitive Pressure Sensor Read-Out Oscillating at 1.67 GHz in 0.18

Authors: Yong Wang, Wang Ling Goh, Jung Hyup Lee, Kevin T. C. Chai, Minkyu Je

Abstract:

This paper presents a resonant-based read-out circuit for capacitive pressure sensors. The proposed read-out circuit consists of an LC oscillator and a counter. The circuit detects the capacitance changes of a capacitive pressure sensor by means of frequency shifts from its nominal operation frequency. The proposed circuit is designed in 0.18m CMOS with an estimated power consumption of 43.1mW. Simulation results show that the circuit has a capacitive resolution of 8.06kHz/fF, which enables it for high resolution pressure detection.

Keywords: Capacitance-to-frequency converter, Capacitive pressure sensor, Digital counter, LC oscillator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2923
1657 Effects of Injection Conditions on Flame Structures in Gas-Centered Swirl Coaxial Injector

Authors: Wooseok Song, Sunjung Park, Jongkwon Lee, Jaye Koo

Abstract:

The objective of this paper is to observe the effects of injection conditions on flame structures in gas-centered swirl coaxial injector. Gaseous oxygen and liquid kerosene were used as propellants. For different injection conditions, two types of injector, which only differ in the diameter of the tangential inlet, were used in this study. In addition, oxidizer injection pressure was varied to control the combustion chamber pressure in different types of injector. In order to analyze the combustion instability intensity, the dynamic pressure was measured in both the combustion chamber and propellants lines. With the increase in differential pressure between the propellant injection pressure and the combustion chamber pressure, the combustion instability intensity increased. In addition, the flame structure was recorded using a high-speed camera to detect CH* chemiluminescence intensity. With the change in the injection conditions in the gas-centered swirl coaxial injector, the flame structure changed.

Keywords: Liquid rocket engine, flame structure, combustion instability, dynamic pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
1656 Modeling of Thermal Processes Associated to an Electric Arc

Authors: Allagui Hatem, Ghodbane Fathi

Abstract:

The primary objective of this paper is to study the thermal effects of the electric arc on the breaker apparatus contacts for forecasting and improving the contact durability. We will propose a model which takes account of the main influence factors on the erosion contacts. This phenomenon is very complicated because the amount of ejected metal is not necessarily constituted by the whole melted metal bath but this depends on the balance of forces on the contact surface. Consequently, to calculate the metal ejection coefficient, we propose a method which consists in comparing the experimental results with the calculated ones. The proposed model estimates the mass lost by vaporization, by droplets ejection and by the extraction mechanism of liquid or solid metal. In the one-dimensional geometry, to calculate of the contact heating, we used Green’s function which expresses the point source and allows the transition to the surface source. However, for the two- dimensional model we used explicit and implicit numerical methods. The results are similar to those found by Wilson’s experiments.

Keywords: Electric arc, thermal effect, erosion, contact, durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
1655 Optimization of Fin Type and Fin per Inch on Heat Transfer and Pressure Drop of an Air Cooler

Authors: A. Falavand Jozaei, A. Ghafouri

Abstract:

Operation enhancement in an air cooler depends on rate of heat transfer, and pressure drop. In this paper for a given heat duty, study of the effects of FPI (Fin Per Inch) and fin type (circular and hexagonal fins) on heat transfer, and pressure drop in an air cooler in Iran, Arvand petrochemical. A program in EES (Engineering Equations Solver) software moreover, Aspen B-JAC and HTFS+ softwares are used for this purpose to solve governing equations. At first the simulated results obtained from this program is compared to the experimental data for two cases of FPI. The effects of FPI from 3 to 15 over heat transfer (Q) to pressure drop ratio (Q/Δp ratio). This ratio is one of the main parameters in design, and simulation heat exchangers. The results show that heat transfer (Q) and pressure drop increase with increasing FPI steadily, and the Q/Δp ratio increases to FPI=12 and then decreased gradually to FPI=15, and Q/Δp ratio is maximum at FPI=12. The FPI value selection between 8 and 12 obtained as a result to optimum heat transfer to pressure drop ratio. Also by contrast, between circular and hexagonal fins results, the Q/Δp ratio of hexagonal fins more than Q/Δp ratio of circular fins for FPI between 8 and 12 (optimum FPI)

Keywords: Air cooler, circular and hexagonal fins, fin per inch, heat transfer and pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4634
1654 Modeling HIV/AIDS Prevention by Defense

Authors: Farai Nyabadza

Abstract:

The functional response of an infective is the relationship between an infected individual-s infection rate and the abundance of the number of susceptibles that one can potentially be infected. In this paper, we consider defensive attitudes for HIV prevention (primary prevention) while at the same time emphasizing on offensive attitudes that reduce infection for those infected (secondary prevention). We look at how defenses can protect an uninfected individual in the case where high risk groups such as commercial sex workers and those who deliberately go out to look for partners. We propose an infection cycle that begins with a search, then an encounter, a proposal and contact. The infection cycle illustrates the various steps an infected individual goes through to successfully infect a susceptible. For heterogeneous transmission of HIV, there will be no infection unless there is contact. The ability to avoid an encounter, detection, proposal and contact constitute defense.

Keywords: Functional response, Infection cycle, Prevention, Defences, SSS equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
1653 A Study of the Growth of Single-Phase Mg0.5Zn0.5O Films for UV LED

Authors: Hong Seung Kim, Chang Hoi Kim, Lili Yue

Abstract:

Single-phase, high band gap energy Zn0.5Mg0.5O films were grown under oxygen pressure, using pulse laser deposition with a Zn0.5Mg0.5O target. Structural characterization studies revealed that the crystal structures of the ZnX-1MgXO films could be controlled via changes in the oxygen pressure. TEM analysis showed that the thickness of the deposited Zn1-xMgxO thin films was 50–75 nm. As the oxygen pressure increased, we found that one axis of the crystals did not show a very significant increase in the crystallization compared with that observed at low oxygen pressure. The X-ray diffraction peak intensity for the hexagonal-ZnMgO (002) plane increased relative to that for the cubic-ZnMgO (111) plane. The corresponding c-axis of the h-ZnMgO lattice constant increased from 5.141 to 5.148 Å, and the a-axis of the c-ZnMgO lattice constant decreased from 4.255 to 4.250 Å. EDX analysis showed that the Mg content in the mixed-phase ZnMgO films decreased significantly, from 54.25 to 46.96 at.%. As the oxygen pressure was increased from 100 to 150 mTorr, the absorption edge red-shifted from 3.96 to 3.81 eV; however, a film grown at the highest oxygen pressure tested here (200 mTorr).

Keywords: MgO, UV LED, ZnMgO, ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
1652 Surface Roughness of Flange Contact to the 25A-size Metal Gasket by using FEM Simulation

Authors: Shigeyuki Haruyama , Didik Nurhadiyanto, Moch Agus Choiron, Ken Kaminishi

Abstract:

The previous study of new metal gasket that contact width and contact stress an important design parameter for optimizing metal gasket performance. The optimum design based on an elastic and plastic contact stress was founded. However, the influence of flange surface roughness had not been investigated thoroughly. The flange has many kinds of surface roughness. In this study, we conducted a gasket model include a flange surface roughness effect. A finite element method was employed to develop simulation solution. A uniform quadratic mesh used for meshing the gasket material and a gradually quadrilateral mesh used for meshing the flange. The gasket model was simulated by using two simulation stages which is forming and tightening simulation. A simulation result shows that a smoother of surface roughness has higher slope for force per unit length. This mean a squeezed against between flange and gasket will be strong. The slope of force per unit length for gasket 400-MPa mode was higher than the gasket 0-MPa mode.

Keywords: Surface roughness, flange, metal gasket, leakage, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
1651 An Aerodynamic Design and Analysis of Motor Cycle Helmet with Anti-Glare Visor

Authors: V. C. Sathish Gandhi, R. Kumaravelan, S. Ramesh, M. Venkatesan, M. Siva Rama Krishnan

Abstract:

Motor cycle accidents have been increased for the past two decades. Helmet can protect the vehicle riders from severe injuries during road accident to certain extent. To design a functional helmet, it is important to analyze the shape of the helmet and visor portion. Hence, an attempt has been made for design and analysis of new helmet by considering the drag pressure and anti-glare visor. The drag pressure resistance presses the helmet against the neck portion of the rider. The shape of an aerodynamic helmet can be able to reduce the drag pressure. The spherical shape and a new aerodynamic shape helmets are designed with help of Pro-E software and the drag pressures were calculated and comparison has been made on the basis of drag pressure.

Keywords: Helmet, drag pressure, aero-dynamic, refractive index, Pro-E.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4915
1650 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9 DOF Platform

Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu

Abstract:

Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.

Keywords: Capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
1649 Nugget Formation during Resistance Spot Welding using Finite Element Model

Authors: Jawad Saleem, Abdul Majid, Kent Bertilsson, Torbjörn Carlberg, Nazar Ul Islam

Abstract:

Resistance spot welding process comprises of electric, thermal and mechanical phenomenon, which makes this process complex and highly non-linear and thus, it becomes difficult to model it. In order to obtain good weld nugget during spot welding, hit and trial welds are usually done which is very costly. Therefore the numerical simulation research has been conducted to understand the whole process. In this paper three different cases were analyzed by varying the tip contact area and it was observed that, with the variation of tip contact area the nugget formation at the faying surface is affected. The tip contact area of the welding electrode becomes large with long welding cycles. Therefore in order to maintain consistency of nugget formation during the welding process, the current compensation in control feedback is required. If the contact area of the welding electrode tip is reduced, a large amount of current flows through the faying surface, as a result of which sputtering occurs.

Keywords: Resistance spot welding, Finite element modeling, Nugget formation, Welding electrode, Numerical method simulation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3746
1648 Stress Evaluation of Rotary Injector Pump Parts in MF285 Tractor Using Finite Element Method

Authors: M. Azadbakht, Y. Fadakar

Abstract:

Since fuel must be injected with appropriate pressure and time for accurate performance of diesel engines, then proper function of engine is influenced by accurate function of injector pump. At first total pump was designed by SolidWorks 2012 software. Then the total relationship of rotor, roller, internal cam ring, pole shoe and plunger in injector pump in MF285 tractor and their performance was shown. During suction state rollers connect with dents in internal cam ring and in pressure course pole shoes have drawer move in rotor and perform tappet action between rollers and plungers. The maximum stress was obtained by using analysis of finite element method. The maximum stress in contact surface of roller and internal cam ring and on roller surface. The maximum amount of this stress is 288.12 MPa. According to conducted analyses, the minimum value for safety factor is related to roller surface and it equals to 2.0477.

Keywords: Rotary injector pump, MF285 tractor, finite element, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3043
1647 Design and Manufacture of Non-Contact Moving Load for Experimental Analysis of Beams

Authors: FiroozBakhtiari-Nejad, Hamidreza Rostami, MeysamMirzaee, Mona Zandbaf

Abstract:

Dynamic tests are an important step of the design of engineering structures, because the accuracy of predictions of theoretical–numerical procedures can be assessed. In experimental test of moving loads that is one of the major research topics, the load is modeled as a simple moving mass or a small vehicle. This paper deals with the applicability of Non-contact Moving Load (NML) for vibration analysis. For this purpose, an experimental set-up is designed to generate the different types of NML including constant and harmonic. The proposed method relies on pressurized air which is useful, especially when dealing with fragile or sensitive structures. To demonstrate the performance of this system, the set-up is employedfor a modal analysis of a beam and detecting crack of the beam.The obtained results indicate that the experimental set-up for NML can be an attractive alternative to the moving load problems.

Keywords: Experimental analysis, Moving load, Non-contact excitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
1646 The Effect of Multi-Layer Bandage on the Interface Pressure Applied by Compression Bandages

Authors: Jawad Al Khaburi, Abbas A. Dehghani-Sanij, E. Andrea Nelson, Jerry Hutchinson

Abstract:

Medical compression bandages are widely used in the treatment of chronic venous disorder. In order to design effective compression bandages, researchers have attempted to describe the interface pressure applied by multi-layer bandages using mathematical models. This paper reports on the work carried out to compare and validate the mathematical models used to describe the interface pressure applied by multi-layer bandages. Both analytical and experimental results showed that using simple multiplication of a number of bandage layers with the pressure applied by one layer of bandage or ignoring the increase in the limb radius due to former layers of bandage will result in overestimating the pressure. Experimental results showed that the mathematical models, which take into consideration the increase in the limb radius due to former bandage layers, are more accurate than the one which does not.

Keywords: Compression bandages, FlexiForce, interface pressure, venous ulcer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678
1645 Density Wave Instability of Supercritical Kerosene in Active Cooling Channels of Scramjets

Authors: N. Wang, Y. Pan, J. Zhou, J. Lei, X. Z. Yang

Abstract:

Experimental investigations were made on the instability of supercritical kerosene flowing in active cooling channels. Two approaches were used to control the pressure in the channel. One is the back-pressure valve while the other is the venturi. In both conditions, a kind of low-frequency oscillation of pressure and temperature is observed. And the oscillation periods are calculated. By comparison with the flow time, it is concluded that the instability occurred in active cooling channels is probably one kind of density wave instability. And its period has no relationship with the cooling channel geometry, nor the pressure, but only depends on the flow time of kerosene in active cooling channels. When the mass flow rate, density and pressure drop couple with each other, the density wave instability will appear.

Keywords: scramjets, active cooling, instability, density wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
1644 Effects of Knitting Variables for Pressure Controlling of Tubular Compression Fabrics

Authors: Yu Shi, Rong Liu, Jingyun Lv

Abstract:

Compression textiles with ergonomic-fit and controllable pressure performance have demonstrated positive effect on prevention and treatment of chronic venous insufficiency (CVI). Well-designed compression textile products contribute to improving user compliance in their daily application. This study explored the effects of multiple knitting variables (yarn-machinery settings) on the physical-mechanical properties and the produced pressure magnitudes of tubular compression fabrics (TCFs) through experimental testing and multiple regression modeling. The results indicated that fabric physical (stitch densities and circumference) and mechanical (tensile) properties were affected by the linear density of inlay yarns, which, to some extent, influenced pressure magnitudes of the TCFs. Knitting variables (e.g., feeding velocity of inlay yarns and loop size settings) can alter circumferences and tensile properties of tubular fabrics, respectively, and significantly varied pressure values of the TCFs. This study enhanced the understanding of the effects of knitting factors on pressure controlling of TCFs, thus facilitating dimension and pressure design of compression textiles in future development.

Keywords: Laid-in knitted fabric, yarn-machinery settings, pressure magnitudes, quantitative analysis, compression textiles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190
1643 The Sublimation Energy of Metal versus Temperature and Pressure and its Influence on Blow-off Impulse

Authors: Wenhui Tang, Daorong Wang, Xia Huang, Xianwen Ran

Abstract:

Based on the thermodynamic theory, the dependence of sublimation energy of metal on temperature and pressure is discussed, and the results indicate that the sublimation energy decreases linearly with the increase of temperature and pressure. Combined with this result, the blow-off impulse of aluminum induced by pulsed X-ray is simulated by smoothed particle hydrodynamics (SPH) method. The numerical results show that, while the change of sublimation energy with temperature and pressure is considered, the blow-off impulse of aluminum is larger than the case that the sublimation energy is assumed to be a constant.

Keywords: sublimation energy, blow-off impulse, pulsed X-ray, SPH method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
1642 Wall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies

Authors: Chinsuk Hong

Abstract:

This paper investigates the characteristics of wall pressure fluctuations in naturally developing boundary layer flows on axisymmetric bodies experimentally. The axisymmetric body has a modified ellipsoidal blunt nose. Flush-mounted microphones are used to measure the wall pressure fluctuations in the boundary layer flow over the body. The measurements are performed in a low noise wind tunnel. It is found that the correlation between the flow regime and the characteristics of the pressure fluctuations is distinct. The process from small fluctuation in laminar flow to large fluctuation in turbulent flow is investigated. Tollmien-Schlichting wave (T-S wave) is found to generate and develop in transition. Because of the T-S wave, the wall pressure fluctuations in the transition region are higher than those in the turbulent boundary layer.

Keywords: Wall Pressure Fluctuation, Boundary Layer Flow, Transition, Turbulent Flow, Axisymmetric Body, Flow Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
1641 Estimation of Shock Velocity and Pressure of Detonations and Finding Their Flow Parameters

Authors: Mahmoud Zarrini, R. N. Pralhad

Abstract:

In this paper, mathematical modeling of detonation in the ground is studied. Estimation of flow parameters such as velocity, maximum velocity, acceleration, maximum acceleration, shock pressure as a result of an explosion in the ground have been computed in an appropriate dynamic model approach. The variation of these parameters with the diameter of detonation place (L), density of earth or stone (¤ü), time decay of detonation (T), peak pressure (Pm), and time (t) have been analyzed. The model has been developed from the concept of underwater explosions [Refs. [1]-[3]] with appropriate changes to the present model requirements.

Keywords: Shock velocity, detonation, shock acceleration, shock pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
1640 Experimental Investigation on Excess Pore Water Pressure in Soft Soil-Foundations under Minor Shocks

Authors: Zhiying Zhang, Chongdu Cho, Qiang Pan, Xilin Lu

Abstract:

In this study, shaking table tests are performed to investigate the behavior of excess pore water pressure in different soft soil-foundations of soil-structure interaction (SSI) system. The variation of the behaviors under cycled minor shock is observed. Moreover, The generation and variation mechanism of excess pore water pressure under earthquake excitation in different soft soilfoundations are analyzed and discussed.

Keywords: Excess pore water pressure, shaking table tests, soft soil foundation, SSI system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
1639 CFD simulation of Pressure Drops in Liquid Acquisition Device Channel with Sub-Cooled Oxygen

Authors: David J. Chato, John B. McQuillen, Brian J.Motil, David F. Chao, Nengli Zhang

Abstract:

In order to better understand the performance of screen channel liquid acquisition devices (LADs) in liquid oxygen (LOX), a computational fluid dynamics (CFD) simulation of LOX passing through a LAD screen channel was conducted. In the simulation, the screen is taken as a 'porous jump' where the pressure drop across the screen depends on the incoming velocity and is formulated by Δp = Av + Bv2 . The CFD simulation reveals the importance of the pressure losses due to the flow entering from across the screen and impacting and merging with the channel flow and the vortices in the channel to the cumulative flow resistance. In fact, both the flow resistance of flows impact and mergence and the resistance created by vortices are much larger than the friction and dynamic pressure losses in the channel and are comparable to the flow resistance across the screen. Therefore, these resistances in the channel must be considered as part of the evaluation for the LAD channel performance. For proper operation of a LAD in LOX these resistances must be less than the bubble point pressure for the screen channel in LOX. The simulation also presents the pressure and velocity distributions within the LAD screen channel, expanding the understanding of the fluid flow characteristics within the channel.

Keywords: Liquid acquisition devices, liquid oxygen, pressure drop, vortex, bubble point, flow rate limitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979