Search results for: Z Source Inverter.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1526

Search results for: Z Source Inverter.

1526 Analysis of a PWM Boost Inverter for Solar Home Application

Authors: Rafia Akhter, Aminul Hoque

Abstract:

Solar Cells are destined to supply electric energy beginning from primary resources. It can charge a battery up to 12V dc. For residential use an inverter for 12V dc to 220Vac conversion is desired. For this a static DC-AC converter is necessarily inserted between the solar cells and the distribution network. This paper describes a new P.W.M. strategy for a voltage source inverter. This modulation strategy reduces the energy losses and harmonics in the P.W.M. voltage source inverter. This technique allows the P.W.M. voltage source inverter to become a new feasible solution for solar home application.

Keywords: Boost Inverter, inverter, duty cycle, PWM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4564
1525 A Topology for High Voltage Gain Half-Bridge Z-Source Inverter with Low Voltage Stress on Capacitors

Authors: M. Nageswara Rao

Abstract:

In this paper, a topology for high voltage gain half-bridge z-source inverter with low voltage stress on capacitors is proposed. The proposed inverter has only one impedance network. It can generate symmetric and asymmetric voltages with different magnitudes during both half-cycles. By selecting the duty cycle it can also produce conventional half-bridge inverter characteristics. It is used in special applications like, electrochemical and electro plating applications. Calculations of voltage ripple of capacitors, capacitors voltage stress inductors current ripple are presented. The proposed topology is simulated using PSCAD software and the simulated values are compared with the theoretical values.

Keywords: Half-bridge inverter, impedance network-source inverter, high voltage gain inverter, power system computer aided design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
1524 Advanced Pulse Width Modulation Techniques for Z Source Multi Level Inverter

Authors: B. M. Manjunatha, D. V. Ashok Kumar, M. Vijay Kumar

Abstract:

This paper proposes five level diode clamped Z source Inverter. The existing PWM techniques used for ZSI are restricted for two level. The two level Z Source Inverter have high harmonic distortions which effects the performance of the grid connected PV system. To improve the performance of the system the number of voltage levels in the output waveform need to be increased. This paper presents comparative analysis of a five level diode clamped Z source Inverter with different carrier based Modified Pulse Width Modulation techniques. The parameters considered for comparison are output voltage, voltage gain, voltage stress across switch and total harmonic distortion when powered by same DC supply. Analytical results are verified using MATLAB.

Keywords: Diode Clamped, Pulse Width Modulation, total harmonic distortion, Z Source Inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
1523 Fuzzy Logic Based Cascaded H-Bridge Eleven Level Inverter for Photovoltaic System Using Sinusoidal Pulse Width Modulation Technique

Authors: M. S. Sivagamasundari, P. Melba Mary

Abstract:

Multilevel inverter is a promising inverter topology for high voltage and high power applications. This inverter synthesizes several different levels of DC voltages to produce a stepped AC output that approaches the pure sine waveform. The three different topologies, diode-clamped inverter, capacitor-clamped inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each PV array can act as a separate dc source for each h-bridge module. This research especially focus on photovoltaic power source as input to the system and shows the potential of a Single Phase Cascaded H-bridge Eleven level inverter governed by the fuzzy logic controller to improve the power quality by reducing the total harmonic distortion at the output voltage. Hence the efficiency of the system will be improved. Simulation using MATLAB/SIMULINK has been done to verify the performance of cascaded h-bridge eleven level inverter using sinusoidal pulse width modulation technique. The simulated output shows very favorable result.

Keywords: Multilevel inverter, Cascaded H-Bridge multilevel inverter, Total Harmonic Distortion, Photovoltaic cell, Sinusoidal pulse width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3285
1522 Harmonic Reduction In Three-Phase Parallel Connected Inverter

Authors: M.A.A. Younis, N. A. Rahim, S. Mekhilef

Abstract:

This paper presents the design and analysis of a parallel connected inverter configuration of. The configuration consists of parallel connected three-phase dc/ac inverter. Series resistors added to the inverter output to maintain same current in each inverter of the two parallel inverters, and to reduce the circulating current in the parallel inverters to the minimum. High frequency third harmonic injection PWM (THIPWM) employed to reduce the total harmonic distortion and to make maximum use of the voltage source. DSP was used to generate the THIPWM and the control algorithm for the converter. Selected experimental results have been shown to validate the proposed system.

Keywords: Three-phase inverter, Third harmonic injection PWM, inverters parallel connection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3728
1521 Repetitive Control and Feedback Dithering Modulation of a DC/AC Converter

Authors: Sing-Han Wang, Shiang-Hwua Yu, Chih-Po Yang

Abstract:

Repetitive control and feedback dithering modulation are applied to a single-phase voltage source inverter, with an aim to eliminate harmonics and stabilize the inverter under load variations. The proposed control and modulation scheme comprise multiple loops of feedback, which helps improve inverter performance and robustness. Experimental results show that the designed inverter exhibits very low distortion at its output with THD of about 0.3% under different load variations.

Keywords: Feedback dithering modulation, repetitive control, state feedback, inverter, harmonics elimination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
1520 Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

In this paper, we present a comparative assessment of Space Vector Pulse Width Modulation (SVPWM) and Model Predictive Control (MPC) for two-level three phase (2L-3P) Voltage Source Inverter (VSI). VSI with associated system is subjected to both control techniques and the results are compared. Matlab/Simulink was used to model, simulate and validate the control schemes. Findings of this study show that MPC is superior to SVPWM in terms of total harmonic distortion (THD) and implementation.

Keywords: Model Predictive Control, Space Vector Pulse Width Modulation, Voltage Source Inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4461
1519 Model Predictive Control of Three Phase Inverter for PV Systems

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize the TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of a boost converter (BC), maximum power point tracking (MPPT) control, and a three-leg voltage source inverter (VSI). The operational model of VSI is used to synthesize the sinusoidal current and track the reference. The model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation results show simplicity and accuracy, as well as reliability of the model.

Keywords: Model predictive control, three phase voltage source inverter, PV system, Matlab/Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3710
1518 MPC of Single Phase Inverter for PV System

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: Matlab/Simulink, Model Predictive Control, Phase Locked Loop, Single Phase Inverter, Voltage Source Inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4497
1517 Contribution to Improving the DFIG Control Using a Multi-Level Inverter

Authors: Imane El Karaoui, Mohammed Maaroufi, Hamid Chaikhy

Abstract:

Doubly Fed Induction Generator (DFIG) is one of the most reliable wind generator. Major problem in wind power generation is to generate Sinusoidal signal with very low THD on variable speed caused by inverter two levels used. This paper presents a multi-level inverter whose objective is to reduce the THD and the dimensions of the output filter. This work proposes a three-level NPC-type inverter, the results simulation are presented demonstrating the efficiency of the proposed inverter.

Keywords: DFIG, multilevel inverter, NPC inverter , THD, Induction machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
1516 Mitigation of Flicker using STATCOM with Three-Level 12-pulse Voltage Source Inverter

Authors: Ali Z a'fari

Abstract:

Voltage flicker is a disturbance in electrical power systems. The reason for this disturbance is mainly the large nonlinear loads such as electric arc furnaces. Synchronous static compensator (STATCOM) is considered as a proper technique to mitigate the voltage flicker. Application of more suitable and precise power electronic converter leads to a more precise performance of the compensator. In this paper a three-level 12-pulse voltage source inverter (VSI) with a 12-terminal transformer connected to the ac system is studied and the obtained results are compared with the performance of a STATCOM using a simple two-level VSI and an optimal and more precise performance of the proposed scheme is achieved.

Keywords: Flicker mitigation, STATCOM, Inverter, 12-pulse, 3- level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
1515 Simulation Based Performance Comparison of Different Control Methods of ZSI Feeding Industrial Drives

Authors: Parag Nihawan, Ravinder Singh Bhatia, Dinesh Kumar Jain

Abstract:

Industrial drives are source of serious power quality problems. In this, two typical industrial drives have been dealt with, namely, FOC induction motor drives and DTC induction motor drive. The Z-source inverter is an emerging topology of power electronic converters which is capable of buck boost characteristics. The performances of different control methods based Z-source inverters feeding these industrial drives have been investigated, in this work. The test systems have been modeled and simulated in MATLAB/SIMULINK. The results obtained after carrying out these simulations have been used to draw the conclusions.

Keywords: Z-Source Inverter, total harmonic distortion, direct torque control, field orientation control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984
1514 Cascaded H-Bridge Five Level Inverter Based Selective Harmonic Eliminated Pulse Width Modulation for Harmonic Elimination

Authors: S. Selvaperumal, M. S. Sivagamasundari

Abstract:

In this paper, selective harmonic elimination pulse width modulation technique is employed to eliminate lower order harmonics like third by determination of solving non-linear equations. The cascaded H-bridge five level inverter is driven by the Peripheral Interface Controlled (PIC) Microcontroller 16F877A. The performance of single phase cascaded H-bridge five level inverter with relevant to harmonics and a variety of switches with solar cell as its input source is simulated by employing MATLAB/Simulink. A hardware model is developed to verify the performance of the developed system.

Keywords: Multilevel inverter, cascaded H-Bridge multilevel inverter, total harmonic distortion, selective harmonic elimination pulse width modulation, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
1513 Sensitivity of Input Blocking Capacitor on Output Voltage and Current of a PV Inverter Employing IGBTs

Authors: Z.A. Jaffery, Vinay Kumar Chandna, Sunil Kumar Chaudhary

Abstract:

This paper present a MATLAB-SIMULINK model of a single phase 2.5 KVA, 240V RMS controlled PV VSI (Photovoltaic Voltage Source Inverter) inverter using IGBTs (Insulated Gate Bipolar Transistor). The behavior of output voltage, output current, and the total harmonic distortion (THD), with the variation in input dc blocking capacitor (Cdc), for linear and non-linear load has been analyzed. The values of Cdc as suggested by the other authors in their papers are not clearly defined and it poses difficulty in selecting the proper value. As the dc power stored in Cdc, (generally placed parallel with battery) is used as input to the VSI inverter. The simulation results shows the variation in the output voltage and current with different values of Cdc for linear and non-linear load connected at the output side of PV VSI inverter and suggest the selection of suitable value of Cdc.

Keywords: DC Blocking capacitor, IGBTs, PV VSI, THD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
1512 Implementation and Comparison between Two Algorithms of Three-Level Neutral Point Clamped Voltage Source Inverter

Authors: K. Benamrane, T. Abdelkrim, T. Benslimane, Aeh. Benkhelifa, B. Bezza

Abstract:

This paper presents a comparison between two Pulse Width Modulation (PWM) algorithms applied to a three-level Neutral Point Clamped (NPC) Voltage Source Inverter (VSI). The first algorithm applied is the triangular-sinusoidal strategy; the second is the Space Vector Pulse Width Modulation (SVPWM) strategy. In the first part, we present a topology of three-level NCP VSI. After that, we develop the two PWM strategies to control this converter. At the end the experimental results are presented.

Keywords: Multilevel inverter, Space vector pulse width modulation (SVPWM), triangular-sinusoidal strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466
1511 A Novel Approach of Multilevel Inverter with Reduced Power Electronics Devices

Authors: M. Jagabar Sathik, K. Ramani

Abstract:

In this paper family of multilevel inverter topology with reduced number of power switches is presented. The proposed inverter can generate both even and odd level. The proposed topology is suitable for symmetric structure. The proposed symmetric inverter results in reduction of power switches, power diode and gate driver circuits and also it may further minimize the installation area and cost. To prove the superiority of proposed topology is compared with conventional topologies. The performance of this symmetric multilevel inverter has been tested by computer based simulation and prototype based experimental setup for nine-level inverter is developed and results are verified.

Keywords: Cascaded H- Bridge (CHB), Multilevel Inverter (MLI), Nearest Level Modulation (NLM), Total Harmonic Distortion (THD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3106
1510 Precision Control of Single-Phase PWM Inverter Using M68HC11E Microcontroller

Authors: Khaled A. Madi

Abstract:

Induction motors are being used in greater numbers throughout a wide variety of industrial and commercial applications because it provides many benefits and reliable device to convert the electrical energy into mechanical motion. In some application it-s desired to control the speed of the induction motor. Because of the physics of the induction motor the preferred method of controlling its speed is to vary the frequency of the AC voltage driving the motor. In recent years, with the microcontroller incorporated into an appliance it becomes possible to use it to generate the variable frequency AC voltage to control the speed of the induction motor. This study investigates the microcontroller based variable frequency power inverter. the microcontroller is provide the variable frequency pulse width modulation (PWM) signal that control the applied voltage on the gate drive, which is provides the required PWM frequency with less harmonics at the output of the power inverter. The fully controlled bridge voltage source inverter has been implemented with semiconductors power devices isolated gate bipolar transistor (IGBT), and the PWM technique has been employed in this inverter to supply the motor with AC voltage. The proposed drive system for three & single phase power inverter is simulated using Matlab/Simulink. The Matlab Simulation Results for the proposed system were achieved with different SPWM. From the result a stable variable frequency inverter over wide range has been obtained and a good agreement has been found between the simulation and hardware of a microcontroller based single phase inverter.

Keywords: Power, inverter, PWM, microcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4379
1509 Effect of Inductance Ratio on Operating Frequencies of a Hybrid Resonant Inverter

Authors: Mojtaba Ghodsi, Hamidreza Ziaifar, Morteza Mohammadzaheri, Payam Soltani

Abstract:

In this paper, the performance of a medium power (25 kW/25 kHz) hybrid inverter with a reactive transformer is investigated. To analyze the sensitivity of the inverster, the RSM technique is employed to manifest the effective factors in the inverter to minimize current passing through the Insulated Bipolar Gate Transistors (IGBTs) (current stress). It is revealed that the ratio of the axillary inductor to the effective inductance of resonant inverter (N), is the most effective parameter to minimize the current stress in this type of inverter. In practice, proper selection of N mitigates the current stress over IGBTs by five times. This reduction is very helpful to keep the IGBTs at normal temperatures.

Keywords: Analytical analysis, hybrid resonant inverter, reactive transformer, response surface method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680
1508 Direct Power Control Applied on 5-Level Diode Clamped Inverter Powered by a Renewable Energy Source

Authors: A. Elnady

Abstract:

This paper presents an improved Direct Power Control (DPC) scheme applied to the multilevel inverter that forms a Distributed Generation Unit (DGU). This paper demonstrates the performance of active and reactive power injected by the DGU to the smart grid. The DPC is traditionally operated by the hysteresis controller with the Space Vector Modulation (SVM) which is applied on the 2-level inverters or 3-level inverters. In this paper, the DPC is operated by the PI controller with the Phase-Disposition Pulse Width Modulation (PD-PWM) applied to the 5-level diode clamped inverter. The new combination of the DPC, PI controller, PD-PWM and multilevel inverter proves that its performance is much better than the conventional hysteresis-SVM based DPC. Simulations results have been presented to validate the performance of the suggested control scheme in the grid-connected mode.

Keywords: Direct power control, PI controller, PD-PWM, and power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
1507 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM

Authors: Gaddafi S. Shehu, T. Yalcinoz, Abdullahi B. Kunya

Abstract:

Multilevel inverters such as flying capacitor, diodeclamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.

Keywords: Cascaded H-bridge Multilevel Inverter, Power Quality, Selective Harmonic Elimination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5052
1506 Novel Sinusoidal Pulse Width Modulation with Least Correlated Noise

Authors: Shiang-Hwua Yu, Han-Sheng Tseng

Abstract:

This paper presents a novel sinusoidal modulation scheme that features least correlated noise and high linearity. The modulation circuit, which is composed of a quantizer, a resonator, and a comparator, is capable of eliminating correlated modulation noise while doing modulation. The proposed modulation scheme combined with the linear quadratic optimal control is applied to a single-phase voltage source inverter and validated with the experiment results. The experiments show that the inverter supplies stable 60Hz 110V AC power with a total harmonic distortion of less than 1%, under the DC input variation from 190 V to 300 V and the output power variation from 0 to 600 W.

Keywords: Pulse width modulation, feedback dithering, linear quadratic control, inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
1505 Three Phase PWM Inverter for Low Rating Energy Efficient Systems

Authors: Nelson K. Lujara

Abstract:

The paper presents a practical three-phase PWM inverter suitable for low voltage, low rating energy efficient systems. The work in the paper is conducted with the view to establishing the significance of the loss contribution from the PWM inverter in the determination of the complete losses of a photovoltaic (PV) arraypowered induction motor drive water pumping system. Losses investigated include; conduction and switching loss of the devices and gate drive losses. It is found that the PWM inverter operates at a reasonable variable efficiency that does not fall below 92% depending on the load. The results between the simulated and experimental results for the system with or without a maximum power tracker (MPT) compares very well, within an acceptable range of 2% margin.

Keywords: Energy, Inverter, Losses, Photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
1504 A Literature Assessment of Multi-Level Inverters

Authors: P. Kiruthika, K. Ramani

Abstract:

Multi-Level Inverter technology has been developed in the area of high-power medium-voltage energy scheme, because of their advantages such as devices of lower rating can be used thereby enabling the schemes to be used for high voltage applications. Reduced Total Harmonic Distortion (THD).Since the dv/dt is low; the Electromagnetic Interference from the scheme is low. To avoid the switching losses Lower switching frequencies can be used. In this paper present a survey of various topologies, control strategy and modulation techniques used by these inverters. Here the regenerative and superior topologies are also discussed.

Keywords: Cascaded H-bridge Multi-Level Inverter, Diode Clamped Multi-Level Inverter, Flying Capacitors Multi- Level Inverter, Multi-Level Inverter, Total Harmonic Distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3596
1503 Uniform Overlapped Multi-Carrier PWM for a Six-Level Diode Clamped Inverter

Authors: S.Srinivas

Abstract:

Multi-level voltage source inverters offer several advantages such as; derivation of a refined output voltage with reduced total harmonic distortion (THD), reduction of voltage ratings of the power semiconductor switching devices and also the reduced electro-magnetic-interference problems etc. In this paper, new carrier-overlapped phase-disposition or sub-harmonic sinusoidal pulse width modulation (CO-PD-SPWM) and also the carrieroverlapped phase-disposition space vector modulation (CO-PDSVPWM) schemes for a six-level diode-clamped inverter topology are proposed. The principle of the proposed PWM schemes is similar to the conventional PD-PWM with a little deviation from it in the sense that the triangular carriers are all overlapped. The overlapping of the triangular carriers on one hand results in an increased number of switchings, on the other hand this facilitates an improved spectral performance of the output voltage. It is demonstrated through simulation studies that the six-level diode-clamped inverter with the use of CO-PD-SPWM and CO-PD-SVPWM proposed in this paper is capable of generating multiple levels in its output voltage. The advantages of the proposed PWM schemes can be derived to benefit, especially at lower modulation indices of the inverter and hence this aspect of the proposed PWM schemes can be well exploited in high power applications requiring low speeds of operation of the drive.

Keywords: Diode clamped inverter, Pulse width modulation, Six level inverter, carrier based PWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
1502 Space-Vector PWM Inverter Feeding a Permanent-Magnet Synchronous Motor

Authors: A. Maamoun, Y. M. Alsayed, A. Shaltout

Abstract:

The paper presents a space-vector pulse width modulation (SVPWM) inverter feeding a permanent-magnet synchronous motor (PMSM). The SVPWM inverter enables to feed the motor with a higher voltage with low harmonic distortions than the conventional sinusoidal PWM inverter. The control strategy of the inverter is the voltage / frequency control method, which is based on the space-vector modulation technique. The proposed PMSM drive system involving the field-oriented control scheme not only decouples the torque and flux which provides faster response but also makes the control task easy. The performance of the proposed drive is simulated. The advantages of the proposed drive are confirmed by the simulation results.

Keywords: permanent-magnet synchronous motor, space-vectorPWM inverter, voltage/frequency control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6652
1501 Performance Evaluation of a Neural Network based General Purpose Space Vector Modulator

Authors: A.Muthuramalingam, S.Himavathi

Abstract:

Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for an inverter used in a variable frequency drive applications. It is computationally rigorous and hence limits the inverter switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained, the network with minimum resource and appropriate word length is identified. The bit precision required for this application is identified. The network with 8-bit precision is implemented in the IC XCV 400 and the results are presented. The performance of NN based general purpose SVM with higher bit precision is discussed.

Keywords: NN based SVM, FPGA Implementation, LayerMultiplexing, NN structure and Resource Reduction, PerformanceEvaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
1500 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters

Authors: Satish Kumar Peddapelli

Abstract:

This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have became popular and considerable interest by researcher are given on them. A fast space-vector pulse width modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analyzed.

Keywords: Five-level inverter, Space vector pulse wide modulation, diode clamped inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7705
1499 Fuzzy Tuned PID Controller with D-Q-O Reference Frame Technique Based Active Power Filter

Authors: Kavala Kiran Kumar, R. Govardhana Rao

Abstract:

Active power filter continues to be a powerful tool to control harmonics in power systems thereby enhancing the power quality. This paper presents a fuzzy tuned PID controller based shunt active filter to diminish the harmonics caused by non linear loads like thyristor bridge rectifiers and imbalanced loads. Here Fuzzy controller provides the tuning of PID, based on firing of thyristor bridge rectifiers and variations in input rms current. The shunt APF system is implemented with three phase current controlled Voltage Source Inverter (VSI) and is connected at the point of common coupling for compensating the current harmonics by injecting equal but opposite filter currents. These controllers are capable of controlling dc-side capacitor voltage and estimating reference currents. Hysteresis Current Controller (HCC) is used to generate switching signals for the voltage source inverter. Simulation studies are carried out with non linear loads like thyristor bridge rectifier along with unbalanced loads and the results proved that the APF along with fuzzy tuned PID controller work flawlessly for different firing angles of non linear load.

Keywords: Active power filters (APF), Fuzzy logic controller (FLC), Hysteresis current controller (HCC), PID, Total harmonic Distortion (THD), Voltage source inverter (VSI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
1498 Feed-Forward Control in Half-Bridge Resonant DC Link Inverter

Authors: Apinan Aurasopon, Worawat Sa-ngiavibool

Abstract:

This paper proposes a feed-forward control in a halfbridge resonant dc link inverter. The configuration of feed-forward control is based on synchronous sigma-delta modulation and the halfbridge resonant dc link inverter consists of two inductors, one capacitor and two power switches. The simulation results show the proposed technique can reject non-ideal dc bus improving the total harmonic distortion.

Keywords: Feed-forward control, Resonant dc link inverter, Synchronous sigma-delta modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
1497 Replacing MOSFETs with Single Electron Transistors (SET) to Reduce Power Consumption of an Inverter Circuit

Authors: Ahmed Shariful Alam, Abu Hena M. Mustafa Kamal, M. Abdul Rahman, M. Nasmus Sakib Khan Shabbir, Atiqul Islam

Abstract:

According to the rules of quantum mechanics there is a non-vanishing probability of for an electron to tunnel through a thin insulating barrier or a thin capacitor which is not possible according to the laws of classical physics. Tunneling of electron through a thin insulating barrier or tunnel junction is a random event and the magnitude of current flowing due to the tunneling of electron is very low. As the current flowing through a Single Electron Transistor (SET) is the result of electron tunneling through tunnel junctions of its source and drain the supply voltage requirement is also very low. As a result, the power consumption across a Single Electron Transistor is ultra-low in comparison to that of a MOSFET. In this paper simulations have been done with PSPICE for an inverter built with both SETs and MOSFETs. 35mV supply voltage was used for a SET built inverter circuit and the supply voltage used for a CMOS inverter was 3.5V.

Keywords: ITRS, enhancement type MOSFET, island, DC analysis, transient analysis, power consumption, background charge co-tunneling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743