Search results for: high voltage gain inverter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6808

Search results for: high voltage gain inverter

6808 A Topology for High Voltage Gain Half-Bridge Z-Source Inverter with Low Voltage Stress on Capacitors

Authors: M. Nageswara Rao

Abstract:

In this paper, a topology for high voltage gain half-bridge z-source inverter with low voltage stress on capacitors is proposed. The proposed inverter has only one impedance network. It can generate symmetric and asymmetric voltages with different magnitudes during both half-cycles. By selecting the duty cycle it can also produce conventional half-bridge inverter characteristics. It is used in special applications like, electrochemical and electro plating applications. Calculations of voltage ripple of capacitors, capacitors voltage stress inductors current ripple are presented. The proposed topology is simulated using PSCAD software and the simulated values are compared with the theoretical values.

Keywords: Half-bridge inverter, impedance network-source inverter, high voltage gain inverter, power system computer aided design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
6807 Performance Enhancement of Analog Voltage Inverter with Adaptive Gain Control for Capacitive Load

Authors: Sun-Ki Hong, Yong-Ho Cho, Ki-Seok Kim, Tae-Sam Kang

Abstract:

Piezoelectric actuator is treated as RC load when it is modeled electrically. For some piezoelectric actuator applications, arbitrary voltage is required to actuate. Especially for unidirectional arbitrary voltage driving like as sine wave, some special inverter with circuit that can charge and discharge the capacitive energy can be used. In this case, the difference between power supply level and the object voltage level for RC load is varied. Because the control gain is constant, the controlled output is not uniform according to the voltage difference. In this paper, for charge and discharge circuit for unidirectional arbitrary voltage driving for piezoelectric actuator, the controller gain is controlled according to the voltage difference. With the proposed simple idea, the load voltage can have controlled smoothly although the voltage difference is varied. The appropriateness is proved from the simulation of the proposed circuit.

Keywords: Analog voltage inverter, Capacitive load, Gain control, DC-DC converter, Piezoelectric, Voltage waveform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
6806 Advanced Pulse Width Modulation Techniques for Z Source Multi Level Inverter

Authors: B. M. Manjunatha, D. V. Ashok Kumar, M. Vijay Kumar

Abstract:

This paper proposes five level diode clamped Z source Inverter. The existing PWM techniques used for ZSI are restricted for two level. The two level Z Source Inverter have high harmonic distortions which effects the performance of the grid connected PV system. To improve the performance of the system the number of voltage levels in the output waveform need to be increased. This paper presents comparative analysis of a five level diode clamped Z source Inverter with different carrier based Modified Pulse Width Modulation techniques. The parameters considered for comparison are output voltage, voltage gain, voltage stress across switch and total harmonic distortion when powered by same DC supply. Analytical results are verified using MATLAB.

Keywords: Diode Clamped, Pulse Width Modulation, total harmonic distortion, Z Source Inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
6805 Analysis of a PWM Boost Inverter for Solar Home Application

Authors: Rafia Akhter, Aminul Hoque

Abstract:

Solar Cells are destined to supply electric energy beginning from primary resources. It can charge a battery up to 12V dc. For residential use an inverter for 12V dc to 220Vac conversion is desired. For this a static DC-AC converter is necessarily inserted between the solar cells and the distribution network. This paper describes a new P.W.M. strategy for a voltage source inverter. This modulation strategy reduces the energy losses and harmonics in the P.W.M. voltage source inverter. This technique allows the P.W.M. voltage source inverter to become a new feasible solution for solar home application.

Keywords: Boost Inverter, inverter, duty cycle, PWM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4551
6804 Inverter Based Gain-Boosting Fully Differential CMOS Amplifier

Authors: Alpana Agarwal, Akhil Sharma

Abstract:

This work presents a fully differential CMOS amplifier consisting of two self-biased gain boosted inverter stages, that provides an alternative to the power hungry operational amplifier. The self-biasing avoids the use of external biasing circuitry, thus reduces the die area, design efforts, and power consumption. In the present work, regulated cascode technique has been employed for gain boosting. The Miller compensation is also applied to enhance the phase margin. The circuit has been designed and simulated in 1.8 V 0.18 µm CMOS technology. The simulation results show a high DC gain of 100.7 dB, Unity-Gain Bandwidth of 107.8 MHz, and Phase Margin of 66.7o with a power dissipation of 286 μW and makes it suitable candidate for the high resolution pipelined ADCs.

Keywords: CMOS amplifier, gain boosting, inverter-based amplifier, self-biased inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511
6803 A Literature Assessment of Multi-Level Inverters

Authors: P. Kiruthika, K. Ramani

Abstract:

Multi-Level Inverter technology has been developed in the area of high-power medium-voltage energy scheme, because of their advantages such as devices of lower rating can be used thereby enabling the schemes to be used for high voltage applications. Reduced Total Harmonic Distortion (THD).Since the dv/dt is low; the Electromagnetic Interference from the scheme is low. To avoid the switching losses Lower switching frequencies can be used. In this paper present a survey of various topologies, control strategy and modulation techniques used by these inverters. Here the regenerative and superior topologies are also discussed.

Keywords: Cascaded H-bridge Multi-Level Inverter, Diode Clamped Multi-Level Inverter, Flying Capacitors Multi- Level Inverter, Multi-Level Inverter, Total Harmonic Distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3581
6802 Grid-Connected Photovoltaic System: System Overview and Sizing Principles

Authors: Najiya Omar, Hamed Aly, Timothy Little

Abstract:

The optimal size of a photovoltaic (PV) array is considered a critical factor in designing an efficient PV system due to the dependence of the PV cell performance on temperature. A high temperature can lead to voltage losses of solar panels, whereas a low temperature can cause voltage overproduction. There are two possible scenarios of the inverter’s operation in which they are associated with the erroneous calculations of the number of PV panels: 1) If the number of the panels is scant and the temperature is high, the minimum voltage required to operate the inverter will not be reached. As a result, the inverter will shut down. 2) Comparably, if the number of panels is excessive and the temperature is low, the produced voltage will be more than the maximum limit of the inverter which can cause the inverter to get disconnected or even damaged. This article aims to assess theoretical and practical methodologies to calculate size and determine the topology of a PV array. The results are validated by applying an experimental evaluation for a 100 kW Grid-connected PV system for a location in Halifax, Nova Scotia and achieving a satisfactory system performance compared to the previous work done.

Keywords: Sizing PV panels, grid-connected PV, topology of PV array, theoretical and practical methodologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
6801 Implementation and Simulation of Half-Bridge Series Resonant Inverter in Zero Voltage Switching

Authors: Buket Turan Azizoğlu

Abstract:

In switch mode power inverters, small sized inverters can be obtained by increasing the switching frequency. Switching frequency increment causes high driver losses. Also, high dt di and dt dv produced by the switching action creates high Electromagnetic Interference (EMI) and Radio Frequency Interference (RFI). In this paper, a series half bridge series resonant inverter circuit is simulated and evaluated practically to demonstrate the turn-on and turn-off conditions during zero or close to zero voltage switching. Also, the reverse recovery current effects of the body diode of the MOSFETs were investigated by operating above and below resonant frequency.

Keywords: Driver losses, Half Bridge series resonant inverter, Zero Voltage Switching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3705
6800 Fuzzy Logic Based Cascaded H-Bridge Eleven Level Inverter for Photovoltaic System Using Sinusoidal Pulse Width Modulation Technique

Authors: M. S. Sivagamasundari, P. Melba Mary

Abstract:

Multilevel inverter is a promising inverter topology for high voltage and high power applications. This inverter synthesizes several different levels of DC voltages to produce a stepped AC output that approaches the pure sine waveform. The three different topologies, diode-clamped inverter, capacitor-clamped inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each PV array can act as a separate dc source for each h-bridge module. This research especially focus on photovoltaic power source as input to the system and shows the potential of a Single Phase Cascaded H-bridge Eleven level inverter governed by the fuzzy logic controller to improve the power quality by reducing the total harmonic distortion at the output voltage. Hence the efficiency of the system will be improved. Simulation using MATLAB/SIMULINK has been done to verify the performance of cascaded h-bridge eleven level inverter using sinusoidal pulse width modulation technique. The simulated output shows very favorable result.

Keywords: Multilevel inverter, Cascaded H-Bridge multilevel inverter, Total Harmonic Distortion, Photovoltaic cell, Sinusoidal pulse width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3278
6799 Sensitivity of Input Blocking Capacitor on Output Voltage and Current of a PV Inverter Employing IGBTs

Authors: Z.A. Jaffery, Vinay Kumar Chandna, Sunil Kumar Chaudhary

Abstract:

This paper present a MATLAB-SIMULINK model of a single phase 2.5 KVA, 240V RMS controlled PV VSI (Photovoltaic Voltage Source Inverter) inverter using IGBTs (Insulated Gate Bipolar Transistor). The behavior of output voltage, output current, and the total harmonic distortion (THD), with the variation in input dc blocking capacitor (Cdc), for linear and non-linear load has been analyzed. The values of Cdc as suggested by the other authors in their papers are not clearly defined and it poses difficulty in selecting the proper value. As the dc power stored in Cdc, (generally placed parallel with battery) is used as input to the VSI inverter. The simulation results shows the variation in the output voltage and current with different values of Cdc for linear and non-linear load connected at the output side of PV VSI inverter and suggest the selection of suitable value of Cdc.

Keywords: DC Blocking capacitor, IGBTs, PV VSI, THD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
6798 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters

Authors: Satish Kumar Peddapelli

Abstract:

This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have became popular and considerable interest by researcher are given on them. A fast space-vector pulse width modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analyzed.

Keywords: Five-level inverter, Space vector pulse wide modulation, diode clamped inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7693
6797 Space-Vector PWM Inverter Feeding a Permanent-Magnet Synchronous Motor

Authors: A. Maamoun, Y. M. Alsayed, A. Shaltout

Abstract:

The paper presents a space-vector pulse width modulation (SVPWM) inverter feeding a permanent-magnet synchronous motor (PMSM). The SVPWM inverter enables to feed the motor with a higher voltage with low harmonic distortions than the conventional sinusoidal PWM inverter. The control strategy of the inverter is the voltage / frequency control method, which is based on the space-vector modulation technique. The proposed PMSM drive system involving the field-oriented control scheme not only decouples the torque and flux which provides faster response but also makes the control task easy. The performance of the proposed drive is simulated. The advantages of the proposed drive are confirmed by the simulation results.

Keywords: permanent-magnet synchronous motor, space-vectorPWM inverter, voltage/frequency control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6638
6796 Compensation Method Eliminating Voltage Distortions in PWM Inverter

Authors: H. Sediki, S. Djennoune

Abstract:

The switching lag-time and the voltage drop across the power devices cause serious waveform distortions and fundamental voltage drop in pulse width-modulated inverter output. These phenomenons are conspicuous when both the output frequency and voltage are low. To estimate the output voltage from the PWM reference signal it is essential to take account of these imperfections and to correct them. In this paper, on-line compensation method is presented. It needs three simple blocs to add at the ideal reference voltages. This method does not require any additional hardware circuit and off- line experimental measurement. The paper includes experimental results to demonstrate the validity of the proposed method. It is applied, finally, in case of indirect vector controlled induction machine and implemented using dSpace card.

Keywords: Dead time, field-oriented control, Induction motor, PWM inverter, voltage drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4539
6795 A 0.9 V, High-Speed, Low-Power Tunable Gain Current Mirror

Authors: Hassan Faraji Baghtash

Abstract:

A high-speed current mirror with low-power method of adjusting current gain is presented. The current mirror provides continuous gain adjustment; yet, its gain can simply be programmed digitally, as well. The structure features the ever interesting merits of linear-in-dB gain control scheme and low power/voltage operation. The performance of proposed structure is verified through the simulation in TSMC 0.18 µm CMOS Technology. The proposed tunable gain current mirror structure draws only 18 µW from 0.9 V power supply and can operate at high frequencies up to 550 MHz in the worst case condition of maximum gain setting.

Keywords: Current mirror, current mode, low power, low voltage, tunable circuit, variable current amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745
6794 Harmonic Reduction In Three-Phase Parallel Connected Inverter

Authors: M.A.A. Younis, N. A. Rahim, S. Mekhilef

Abstract:

This paper presents the design and analysis of a parallel connected inverter configuration of. The configuration consists of parallel connected three-phase dc/ac inverter. Series resistors added to the inverter output to maintain same current in each inverter of the two parallel inverters, and to reduce the circulating current in the parallel inverters to the minimum. High frequency third harmonic injection PWM (THIPWM) employed to reduce the total harmonic distortion and to make maximum use of the voltage source. DSP was used to generate the THIPWM and the control algorithm for the converter. Selected experimental results have been shown to validate the proposed system.

Keywords: Three-phase inverter, Third harmonic injection PWM, inverters parallel connection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3722
6793 Precision Control of Single-Phase PWM Inverter Using M68HC11E Microcontroller

Authors: Khaled A. Madi

Abstract:

Induction motors are being used in greater numbers throughout a wide variety of industrial and commercial applications because it provides many benefits and reliable device to convert the electrical energy into mechanical motion. In some application it-s desired to control the speed of the induction motor. Because of the physics of the induction motor the preferred method of controlling its speed is to vary the frequency of the AC voltage driving the motor. In recent years, with the microcontroller incorporated into an appliance it becomes possible to use it to generate the variable frequency AC voltage to control the speed of the induction motor. This study investigates the microcontroller based variable frequency power inverter. the microcontroller is provide the variable frequency pulse width modulation (PWM) signal that control the applied voltage on the gate drive, which is provides the required PWM frequency with less harmonics at the output of the power inverter. The fully controlled bridge voltage source inverter has been implemented with semiconductors power devices isolated gate bipolar transistor (IGBT), and the PWM technique has been employed in this inverter to supply the motor with AC voltage. The proposed drive system for three & single phase power inverter is simulated using Matlab/Simulink. The Matlab Simulation Results for the proposed system were achieved with different SPWM. From the result a stable variable frequency inverter over wide range has been obtained and a good agreement has been found between the simulation and hardware of a microcontroller based single phase inverter.

Keywords: Power, inverter, PWM, microcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4370
6792 Uniform Overlapped Multi-Carrier PWM for a Six-Level Diode Clamped Inverter

Authors: S.Srinivas

Abstract:

Multi-level voltage source inverters offer several advantages such as; derivation of a refined output voltage with reduced total harmonic distortion (THD), reduction of voltage ratings of the power semiconductor switching devices and also the reduced electro-magnetic-interference problems etc. In this paper, new carrier-overlapped phase-disposition or sub-harmonic sinusoidal pulse width modulation (CO-PD-SPWM) and also the carrieroverlapped phase-disposition space vector modulation (CO-PDSVPWM) schemes for a six-level diode-clamped inverter topology are proposed. The principle of the proposed PWM schemes is similar to the conventional PD-PWM with a little deviation from it in the sense that the triangular carriers are all overlapped. The overlapping of the triangular carriers on one hand results in an increased number of switchings, on the other hand this facilitates an improved spectral performance of the output voltage. It is demonstrated through simulation studies that the six-level diode-clamped inverter with the use of CO-PD-SPWM and CO-PD-SVPWM proposed in this paper is capable of generating multiple levels in its output voltage. The advantages of the proposed PWM schemes can be derived to benefit, especially at lower modulation indices of the inverter and hence this aspect of the proposed PWM schemes can be well exploited in high power applications requiring low speeds of operation of the drive.

Keywords: Diode clamped inverter, Pulse width modulation, Six level inverter, carrier based PWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
6791 A Very High Speed, High Resolution Current Comparator Design

Authors: Neeraj K. Chasta

Abstract:

This paper presents an idea for analog current comparison which compares input signal and reference currents with high speed and accuracy. Proposed circuit utilizes amplification properties of common gate configuration, where voltage variations of input current are amplified and a compared output voltage is developed. Cascaded inverter stages are used to generate final CMOS compatible output voltage. Power consumption of circuit can be controlled by the applied gate bias voltage. The comparator is designed and studied at 180nm CMOS process technology for a supply voltage of 3V.

Keywords: Current Mode, Comparator, High Resolution, High Speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4653
6790 Mitigation of Flicker using STATCOM with Three-Level 12-pulse Voltage Source Inverter

Authors: Ali Z a'fari

Abstract:

Voltage flicker is a disturbance in electrical power systems. The reason for this disturbance is mainly the large nonlinear loads such as electric arc furnaces. Synchronous static compensator (STATCOM) is considered as a proper technique to mitigate the voltage flicker. Application of more suitable and precise power electronic converter leads to a more precise performance of the compensator. In this paper a three-level 12-pulse voltage source inverter (VSI) with a 12-terminal transformer connected to the ac system is studied and the obtained results are compared with the performance of a STATCOM using a simple two-level VSI and an optimal and more precise performance of the proposed scheme is achieved.

Keywords: Flicker mitigation, STATCOM, Inverter, 12-pulse, 3- level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
6789 Simplified Space Vector Based Decoupled Switching Strategy for Indirect Vector Controlled Open-End Winding Induction Motor Drive

Authors: Syed Munvar Ali, V. Vijaya Kumar Reddy, M. Surya Kalavathi

Abstract:

In this paper, a dual inverter configuration has been implemented for induction motor drive. This isolated dual inverter is capable to produce high quality of output voltage and minimize common mode voltage (CMV). To this isolated dual inverter a decoupled space vector based pulse width modulation (PWM) technique is proposed. Conventional space vector based PWM (SVPWM) techniques require reference voltage vector calculation and sector identification. The proposed decoupled SVPWM technique generates gating pulses from instantaneous phase voltages and gives a CMV of ±vdc/6. To evaluate proposed algorithm MATLAB based simulation studies are carried on indirect vector controlled open end winding induction motor drive.

Keywords: Inverter configuration, decoupled SVPWM, common mode voltage, vector control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668
6788 High Speed and Ultra Low-voltage CMOS NAND and NOR Domino Gates

Authors: Yngvar Berg, Omid Mirmotahari

Abstract:

In this paper we ultra low-voltage and high speed CMOS domino logic. For supply voltages below 500mV the delay for a ultra low-voltage NAND2 gate is aproximately 10% of a complementary CMOS inverter. Furthermore, the delay variations due to mismatch is much less than for conventional CMOS. Differential domino gates for AND/NAND and OR/NOR operation are presented.

Keywords: Low-voltage, high-speed, NAND, NOR, CMOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
6787 Effect of Flaying Capacitors on Improving the 4 Level Three-Cell Inverter

Authors: Kelaiaia Mounia Samira, Labar Hocine, Bounaya Kamel, Kelaiaia Samia

Abstract:

With the rapid advanced of technology, the industrial processes become increasingly demanding, from the point of view, power quality and controllability. The advent of multi levels inverters responds partially to these requirements. But actually, the new generation of multi-cells inverters permits to reach more performances, since, it offers more voltage levels. The disadvantage in the increase of voltage levels by the number of cells in cascades is on account of series igbts synchronisation loss, from where, a limitation of cells in cascade to 4. Regarding to these constraints, a new topology is proposed in this paper, which increases the voltage levels of the three-cell inverter from 4 to 8; with the same number of igbts, and using less stored energy in the flaying capacitors. The details of operation and modelling of this new inverter structure are also presented, then tested thanks to a three phase induction motor. KeywordsFlaying capacitors, Multi-cells inverter, pwm, switchers, modelling.

Keywords: Flaying capacitors, Multi-cells inverter, pwm, switchers, modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
6786 Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

In this paper, we present a comparative assessment of Space Vector Pulse Width Modulation (SVPWM) and Model Predictive Control (MPC) for two-level three phase (2L-3P) Voltage Source Inverter (VSI). VSI with associated system is subjected to both control techniques and the results are compared. Matlab/Simulink was used to model, simulate and validate the control schemes. Findings of this study show that MPC is superior to SVPWM in terms of total harmonic distortion (THD) and implementation.

Keywords: Model Predictive Control, Space Vector Pulse Width Modulation, Voltage Source Inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4445
6785 A Study on Unidirectional Analog Output Voltage Inverter for Capacitive Load

Authors: Sun-Ki Hong, Nam-HeeByeon, Jung-Seop Lee, Tae-Sam Kang

Abstract:

For Common R or R-L load to apply arbitrary voltage, the bridge traditional inverters don’t have any difficulties by PWM method. However for driving some piezoelectric actuator, arbitrary voltage not a pulse but a steady voltage should be applied. Piezoelectric load is considered as R-C load and its voltage does not decrease even though the applied voltage decreases. Therefore it needs some special inverter with circuit that can discharge the capacitive energy. Especially for unidirectional arbitrary voltage driving like as sine wave, it becomes more difficult problem. In this paper, a charge and discharge circuit for unidirectional arbitrary voltage driving for piezoelectric actuator is proposed. The circuit has charging and discharging switches for increasing and decreasing output voltage. With the proposed simple circuit, the load voltage can have any unidirectional level with tens of bandwidth because the load voltage can be adjusted by switching the charging and discharging switch appropriately. The appropriateness is proved from the simulation of the proposed circuit.

Keywords: DC-DC converter, analog output voltage, sinusoidal drive, piezoelectric load, discharging circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466
6784 An Improved Performance of the SRM Drives Using Z-Source Inverter with the Simplified Fuzzy Logic Rule Base

Authors: M. Hari Prabhu

Abstract:

This paper is based on the performance of the Switched Reluctance Motor (SRM) drives using Z-Source Inverter with the simplified rule base of Fuzzy Logic Controller (FLC) with the output scaling factor (SF) self-tuning mechanism are proposed. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the membership functions (MFs) without losing the system performance and stability via the adjustable controller gain. ZSI exhibits both voltage-buck and voltage-boost capability. It reduces line harmonics, improves reliability, and extends output voltage range. The output SF of the controller can be tuned continuously by a gain updating factor, whose value is derived from fuzzy logic, with the plant error and error change ratio as input variables. Then the results, carried out on a four-phase 6/8 pole SRM based on the dSPACEDS1104 platform, to show the feasibility and effectiveness of the devised methods and also performance of the proposed controllers will be compared with conventional counterpart.

Keywords: Fuzzy logic controller, scaling factor (SF), switched reluctance motor (SRM), variable-speed drives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
6783 Artificial Intelligent (AI) Based Cascade Multi-Level Inverter for Smart Nano Grid

Authors: S. Chatterji, S. L. Shimi

Abstract:

As wind, solar and other clean and green energy sources gain popularity worldwide, engineers are seeking ways to make renewable energy systems more affordable and to integrate them with existing ac power grids. In the present paper an attempt has been made for integrating the PV arrays to the smart nano grid using an artificial intelligent (AI) based solar powered cascade multilevel inverter. The AI based controller switching scheme has been used for improving the power quality by reducing the Total Harmonic Distortion (THD) of the multi-level inverter output voltage.

Keywords: Artificial Intelligent (AI), Solar Powered Multi-level Inverter, Smart nano grid, Total Harmonic Distortion (THD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3320
6782 Model Predictive Control of Three Phase Inverter for PV Systems

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize the TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of a boost converter (BC), maximum power point tracking (MPPT) control, and a three-leg voltage source inverter (VSI). The operational model of VSI is used to synthesize the sinusoidal current and track the reference. The model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation results show simplicity and accuracy, as well as reliability of the model.

Keywords: Model predictive control, three phase voltage source inverter, PV system, Matlab/Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3690
6781 Repetitive Control and Feedback Dithering Modulation of a DC/AC Converter

Authors: Sing-Han Wang, Shiang-Hwua Yu, Chih-Po Yang

Abstract:

Repetitive control and feedback dithering modulation are applied to a single-phase voltage source inverter, with an aim to eliminate harmonics and stabilize the inverter under load variations. The proposed control and modulation scheme comprise multiple loops of feedback, which helps improve inverter performance and robustness. Experimental results show that the designed inverter exhibits very low distortion at its output with THD of about 0.3% under different load variations.

Keywords: Feedback dithering modulation, repetitive control, state feedback, inverter, harmonics elimination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
6780 MPC of Single Phase Inverter for PV System

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: Matlab/Simulink, Model Predictive Control, Phase Locked Loop, Single Phase Inverter, Voltage Source Inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4489
6779 Design and Analysis of Highly Efficient and Reliable Single-Phase Transformerless Inverter for PV Systems

Authors: L. Ashok Kumar, N. Sujith Kumar

Abstract:

Most of the PV systems are designed with transformer for safety purpose with galvanic isolation. However, the transformer is big, heavy and expensive. Also, it reduces the overall frequency of the conversion stage. Generally PV inverter with transformer is having efficiency around 92%–94% only. To overcome these problems, transformerless PV system is introduced. It is smaller, lighter, cheaper and higher in efficiency. However, dangerous leakage current will flow between PV array and the grid due to the stray capacitance. There are different types of configurations available for transformerless inverters like H5, H6, HERIC, oH5, and Dual paralleled buck inverter. But each configuration is suffering from its own disadvantages like high conduction losses, shoot-through issues of switches, dead-time requirements at zero crossing instants of grid voltage to avoid grid shoot-through faults and MOSFET reverse recovery issues. The main objective of the proposed transformerless inverter is to address two key issues: One key issue for a transformerless inverter is that it is necessary to achieve high efficiency compared to other existing inverter topologies. Another key issue is that the inverter configuration should not have any shoot-through issues for higher reliability.

Keywords: Leakage current, common mode (CM), photovoltaic (PV) systems, pulse width modulation (PWM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3517