Search results for: Voltage Stresses.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1175

Search results for: Voltage Stresses.

995 Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network

Authors: Abed Sami Qawasme, Sameer Khader

Abstract:

This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.

Keywords: Multi level inverter, genetic algorithm, artificial neural network, total harmonic distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 562
994 Investigation of 5,10,15,20-Tetrakis(3-,5--Di-Tert-Butylphenyl)Porphyrinatocopper(II) for Electronics Applications

Authors: Zubair Ahmad, M. H. Sayyad, M. Yaseen, M. Ali

Abstract:

In this work, an organic compound 5,10,15,20- Tetrakis(3,5-di-tertbutylphenyl)porphyrinatocopper(II) (TDTBPPCu) is studied as an active material for thin film electronic devices. To investigate the electrical properties of TDTBPPCu, junction of TDTBPPCu with heavily doped n-Si and Al is fabricated. TDTBPPCu film was sandwiched between Al and n-Si electrodes. Various electrical parameters of TDTBPPCu are determined. The current-voltage characteristics of the junction are nonlinear, asymmetric and show rectification behavior, which gives the clue of formation of depletion region. This behavior indicates the potential of TDTBPPCu for electronics applications. The current-voltage and capacitance-voltage techniques are used to find the different electronic parameters.

Keywords: P-type, organic semiconductor, Electricalcharacteristics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
993 Using Stresses Obtained from a Low Detailed FE Model and Located at a Reference Point to Quickly Calculate the Free-edge Stress Intensity Factors of Bonded Joints

Authors: F. Maamar, M. Sartor

Abstract:

The present study focuses on methods allowing a convenient and quick calculation of the SIFs in order to predict the static adhesive strength of bonded joints. A new SIF calculation method is proposed, based on the stresses obtained from a FE model at a reference point located in the adhesive layer at equal distance of the free-edge and of the two interfaces. It is shown that, even limiting ourselves to the two main modes, i.e. the opening and the shearing modes, and using the values of the stresses resulting from a low detailed FE model, an efficient calculation of the peeling stress at adhesive-substrate corners can be obtained by this way. The proposed method is interesting in that it can be the basis of a prediction tool that will allow the designer to quickly evaluate the SIFs characterizing a particular application without developing a detailed analysis.

Keywords: Adhesive layer, bounded joints, free-edge corner, stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
992 Earth Grid Safety Consideration: Civil Upgrade Works for an Energised Substation

Authors: M. Nassereddine, A. Hellany, M. Nagrial, J. Rizk

Abstract:

The demand on High voltage (HV) infrastructures is growing due to the corresponding growth in industries and population. Many areas are being developed and therefore require additional electrical power to comply with the demand. Substation upgrade is one of the rapid solutions to ensure the continuous supply of power to customers. This upgrade requires civil modifications to structures and fences. The civil work requires excavation and steel works that may create unsafe touch conditions. This paper presents a brief theoretical overview of the touch voltage inside and around substations and uses CDEGS software to simulate a case study.

Keywords: Earth safety, High Voltage, AC interference, Earthing Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
991 Simulation of Static Frequency Converter for Synchronous Machine Operation and Investigation of Shaft Voltage

Authors: Arun Kumar Datta, M. A. Ansari, N. R. Mondal, B. V. Raghavaiah, Manisha Dubey, Shailendra Jain

Abstract:

This study is carried out to understand the effects of Static frequency converter (SFC) on large machine. SFC has a feature of four quadrant operations. By virtue of this it can be implemented to run a synchronous machine either as a motor or alternator. This dual mode operation helps a single machine to start & run as a motor and then it can be converted as an alternator whenever required. One such dual purpose machine is taken here for study. This machine is installed at a laboratory carrying out short circuit test on high power electrical equipment. SFC connected with this machine is broadly described in this paper. The same SFC has been modeled with the MATLAB/Simulink software. The data applied on this virtual model are the actual parameters from SFC and synchronous machine. After running the model, simulated machine voltage and current waveforms are validated with the real measurements. Processing of these waveforms is done through Fast Fourier Transformation (FFT) which reveals that the waveforms are not sinusoidal rather they contain number of harmonics. These harmonics are the major cause of generating shaft voltage. It is known that bearings of electrical machine are vulnerable to current flow through it due to shaft voltage. A general discussion on causes of shaft voltage in perspective with this machine is presented in this paper.

Keywords: Alternators, AC-DC power conversion, capacitive coupling, electric discharge machining, frequency converter, Fourier transforms, inductive coupling, simulation, Shaft voltage, synchronous machines, static excitation, thyristor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5976
990 Damping of Power System Oscillations by using coordinated tuning of POD and PSS with STATCOM

Authors: A. S. P.Kanojia, B. Dr.V.K.Chandrakar

Abstract:

Static synchronous compensator (STATCOM) is a shunt connected voltage source converter (VSC), which can affect rapid control of reactive flow in the transmission line by controlling the generated a.c. voltage. The main aim of the paper is to design a power system installed with a Static synchronous compensator (STATCOM) and demonstrates the application of the linearised Phillips-heffron model in analyzing the damping effect of the STATCOM to improve power system oscillation stability. The proposed PI controller is designed to coordinate two control inputs: Voltage of the injection bus and capacitor voltage of the STATCOM, to improve the Dynamic stability of a SMIB system .The power oscillations damping (POD) control and power system stabilizer (PSS) and their coordinated action with proposed controllers are tested. The simulation result shows that the proposed damping controllers provide satisfactory performance in terms of improvements of dynamic stability of the system.

Keywords: Damping oscillations, FACTS, STATCOM, dynamic stability, PSS, POD, Coordination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487
989 Static and Dynamic Three-Dimensional Finite Element Analysis of Pelvic Bone

Authors: M. S. El-Asfoury, M. A. El-Hadek

Abstract:

The complex shape of the human pelvic bone was successfully imaged and modeled using finite element FE processing. The bone was subjected to quasi-static and dynamic loading conditions simulating the effect of both weight gain and impact. Loads varying between 500 – 2500 N (~50 – 250 Kg of weight) was used to simulate 3D quasi-static weight gain. Two different 3D dynamic analyses, body free fall at two different heights (1 and 2 m) and forced side impact at two different velocities (20 and 40 Km/hr) were also studied. The computed resulted stresses were compared for the four loading cases, where Von Misses stresses increases linearly with the weight gain increase under quasi-static loading. For the dynamic models, the Von Misses stress history behaviors were studied for the affected area and effected load with respect to time. The normalization Von Misses stresses with respect to the applied load were used for comparing the free fall and the forced impact load results. It was found that under the forced impact loading condition an over lapping behavior was noticed, where as for the free fall the normalized Von Misses stresses behavior was found to nonlinearly different. This phenomenon was explained through the energy dissipation concept. This study will help designers in different specialization in defining the weakest spots for designing different supporting systems.

Keywords: Pelvic Bone, Static and Dynamic Analysis, Three- Dimensional Finite Element Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
988 Optimal Analysis of Grounding System Design for Distribution Substation

Authors: T. Lantharthong, N. Rugthaicharoencheep, A. Phayomhom

Abstract:

This paper presents the electrical effect of two neighboring distribution substation during the construction phase. The size of auxiliary grounding grid have an effect on entire grounding system. The bigger the size of auxiliary grounding grid, the lower the GPR and maximum touch voltage, with the exception that when the two grids are unconnected, i.e. the bigger the size of auxiliary grounding grid, the higher the maximum step voltage. The results in this paper could be served as design guideline of grounding system, and perhaps remedy of some troublesome grounding grids in power distribution’s system. Modeling and simulation is carried out on the Current Distribution Electromagnetic interference Grounding and Soil structure (CDEGS) program. The simulation results exhibit the design and analysis of power system grounding and perhaps could be set as a standard in grounding system design and modification in distribution substations.

Keywords: Grounding System, Touch Voltage, Step Voltage, Safety Criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2630
987 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement

Authors: Ferinar Moaidi, Mahdi Moaidi

Abstract:

Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.

Keywords: Distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987
986 Transient Enhanced LDO Voltage Regulator with Improved Feed Forward Path Compensation

Authors: Suresh Alapati, Sreehari Rao Patri, K. S. R. Krishna Prasad

Abstract:

Anultra-low power capacitor less low-dropout voltage regulator with improved transient response using gain enhanced feed forward path compensation is presented in this paper. It is based on a cascade of a voltage amplifier and a transconductor stage in the feed forward path with regular error amplifier to form a composite gainenhanced feed forward stage. It broadens the gain bandwidth and thus improves the transient response without substantial increase in power consumption. The proposed LDO, designed for a maximum output current of 100 mA in UMC 180 nm, requires a quiescent current of 69 )A. An undershot of 153.79mV for a load current changes from 0mA to 100mA and an overshoot of 196.24mV for current change of 100mA to 0mA. The settling time is approximately 1.1 )s for the output voltage undershooting case. The load regulation is of 2.77 )V/mA at load current of 100mA. Reference voltage is generated by using an accurate band gap reference circuit of 0.8V.The costly features of SOC such as total chip area and power consumption is drastically reduced by the use of only a total compensation capacitance of 6pF while consuming power consumption of 0.096 mW.

Keywords: Capacitor-less LDO, frequency compensation, Transient response, latch, self-biased differential amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4018
985 Integration of Unified Power Flow Controller with Backup Energy Supply System for Enhancing Power System Stability

Authors: K. Saravanan

Abstract:

An electrical power system has some negative aspects such as flickering and deviations of voltage/power. This can be eliminated using energy storage devices that will provide a backup energy at the time of voltage/power deviations. Energy-storage devices get charging when system voltage/power is higher than reference value and discharging when system voltage/power is lower than reference value, it is acting as catalysts to provide energy boost. In this paper, a dynamic control of Unified Power Flow Controller (UPFC) integrated with superconducting magnetic energy storage (SMES) is developed to improve the power quality, power oscillation damping, and dynamic voltage stability through the transmission line. UPFC inter-connected to SMES through an interface with DC-DC chopper. This inter-connected system is capable of injecting (absorbing) the real and reactive power into (from) the system at the beginning of stability problems. In this paper, the simulation results of UPFC integrated with SMES and UPFC integrated with fuel cells (FCs) are compared using MATLAB/Simulink software package.

Keywords: UPFC, SMES, power system stability, flexible ac transmission systems, fuel cells, chopper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
984 Low Power Capacitance-to-Voltage Converter for Magnetometer Interface IC

Authors: Dipankar Nag, Choe Andrew Kunil, Kevin Chai Tshun Chuan, Minkyu Je

Abstract:

This paper presents the design and implementation of a fully integrated Capacitance-to-Voltage Converter (CVC) as the analog front-end for magnetometer interface IC. The application demands very low power solution operating in the frequency of around 20 KHz. The design adapts low power architecture to create low noise electronic interface for Capacitive Micro-machined Lorentz force magnetometer sensor. Using a 0.18-μm CMOS process, simulation results of this interface IC show that the proposed CVC can provide 33 dB closed loop gain, 20 nV/√Hz input referred noise at 20 KHz, while consuming 65 μA current from 1.8-V supply. 

Keywords: Analog front end, Capacitance-to-Voltage Converter, Magnetometer, MEMS, Recycling Folded Cascode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3638
983 Selecting an Advanced Creep Model or a Sophisticated Time-Integration? A New Approach by Means of Sensitivity Analysis

Authors: Holger Keitel

Abstract:

The prediction of long-term deformations of concrete and reinforced concrete structures has been a field of extensive research and several different creep models have been developed so far. Most of the models were developed for constant concrete stresses, thus, in case of varying stresses a specific superposition principle or time-integration, respectively, is necessary. Nowadays, when modeling concrete creep the engineering focus is rather on the application of sophisticated time-integration methods than choosing the more appropriate creep model. For this reason, this paper presents a method to quantify the uncertainties of creep prediction originating from the selection of creep models or from the time-integration methods. By adapting variance based global sensitivity analysis, a methodology is developed to quantify the influence of creep model selection or choice of time-integration method. Applying the developed method, general recommendations how to model creep behavior for varying stresses are given.

Keywords: Concrete creep models, time-integration methods, sensitivity analysis, prediction uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
982 A Floating Gate MOSFET Based Novel Programmable Current Reference

Authors: V. Suresh Babu, Haseena P. S., Varun P. Gopi, M. R. Baiju

Abstract:

In this paper a scheme is proposed for generating a programmable current reference which can be implemented in the CMOS technology. The current can be varied over a wide range by changing an external voltage applied to one of the control gates of FGMOS (Floating Gate MOSFET). For a range of supply voltages and temperature, CMOS current reference is found to be dependent, this dependence is compensated by subtracting two current outputs with the same dependencies on the supply voltage and temperature. The system performance is found to improve with the use of FGMOS. Mathematical analysis of the proposed circuit is done to establish supply voltage and temperature independence. Simulation and performance evaluation of the proposed current reference circuit is done using TANNER EDA Tools. The current reference shows the supply and temperature dependencies of 520 ppm/V and 312 ppm/oC, respectively. The proposed current reference can operate down to 0.9 V supply.

Keywords: Floating Gate MOSFET, current reference, self bias scheme, temperature independency, supply voltage independency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
981 Enhancement of the Performance of Al-Qatraneh 33-kV Transmission Line Using STATCOM: A Case Study

Authors: Ali Hamad, Ibrahim Al-Drous, Saleh Al-Jufout

Abstract:

This paper presents a case study of using STATCOM to enhance the performance of Al-Qatraneh 33-kV transmission line. The location of the STATCOM was identified by maintaining minimum voltage drops at the 110 load nodes. The transmission line and the 110 load nodes have been modeled by MATLAB/Simulink. The suggested STATCOM and its location will increase the transmission capability of this transmission line and overcome the overload expected in the year 2020. The annual percentage loading rise has been considered as 14.35%. A graphical representation of the line-to-line voltages and the voltage drops at different load nodes is illustrated.

Keywords: FACTS, MATLAB, STATCOM, transmission line, voltage drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
980 An Evaluation of Sag Detection Techniques for Fast Solid-State Electronic Transferring to Alternate Electrical Energy Sources

Authors: M. N. Moschakis, I. G. Andritsos, V. V. Dafopoulos, J. M. Prousalidis, E. S. Karapidakis

Abstract:

This paper deals with the evaluation of different detection strategies used in power electronic devices as a critical element for an effective mitigation of voltage disturbances. The effectiveness of those detection schemes in the mitigation of disturbances such as voltage sags by a Solid-State Transfer Switch is evaluated through simulations. All critical parameters affecting their performance is analytically described and presented. Moreover, the effect of fast detection of sags on the overall performance of STS is analyzed and investigated.

Keywords: Faults (short-circuits), industrial engineering, power electronics, power quality, static transfer switch, voltage sags (or dips).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
979 Impact of Scale on Rock Strength

Authors: Roland Pusch, Richard Weston

Abstract:

The scale dependence of the strength of virtually homogeneous rock is usually considered to be insignificant but the spectrum of discontinuities plays a very important role for the strength of differently sized rock elements and also controls the rock creep strain. Large-scale load tests comprised recording of the creep strain rate that was found to be strongly retarded and negligible for stresses lower than about 1/3 of the failure load. For higher stresses creep took place according to a log time law representing secondary creep that ultimately changed to tertiary creep and failure.

Keywords: Impact of scale, rock strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
978 Measurement of Small PD-S in Compressed SF6(10%) - N2(90%) Gas Mixture

Authors: B. Rajesh Kamath, J. Sundara Rajan

Abstract:

Partial Discharge measurement is a very important means of assessing the integrity of insulation systems in a High Voltage apparatus. In compressed gas insulation systems, floating particles can initiate partial discharge activities which adversely affect the working of insulation. Partial Discharges below the inception voltage also plays a crucial in damaging the integrity of insulation over a period of time. This paper discusses the effect of loose and fixed Copper and Nichrome wire particles on the PD characteristics in SF6-N2 (10:90) gas mixtures at a pressure of 0.4MPa. The Partial Discharge statistical parameters and their correlation to the observed results are discussed.

Keywords: Gas Insulated transmission Line, Sulphur HexaFlouride, metallic Particles, Partial Discharge (PD), InceptionVoltage (Vi), Extinction Voltage (Ve), PD Statistical parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
977 A Study on Application of Elastic Theory for Computing Flexural Stresses in Preflex Beam

Authors: Nasiri Ahmadullah, Shimozato Tetsuhiro, Masayuki Tai

Abstract:

This paper presents the step-by-step procedure for using Elastic Theory to calculate the internal stresses in composite bridge girders prestressed by the Preflexing Technology, called Prebeam in Japan and Preflex beam worldwide. Elastic Theory approaches preflex beams the same way as it does the conventional composite girders. Since preflex beam undergoes different stages of construction, calculations are made using different sectional and material properties. Stresses are calculated in every stage using the properties of the specific section. Stress accumulation gives the available stress in a section of interest. Concrete presence in the section implies prestress loss due to creep and shrinkage, however; more work is required to be done in this field. In addition to the graphical presentation of this application, this paper further discusses important notes of graphical comparison between the results of an experimental-only research carried out on a preflex beam, with the results of simulation based on the elastic theory approach, for an identical beam using Finite Element Modeling (FEM) by the author.

Keywords: Composite girder, elastic theory, preflex beam, prestressing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 860
976 Characterization of the Energy Band Diagram of Fabricated SnO2/CdS/CdTe Thin Film Solar Cells

Authors: Rasha A. Abdullah, Mohammed. A. Razooqi, Adwan N. H. Al-Ajili

Abstract:

A SnO2/CdS/CdTe heterojunction was fabricated by thermal evaporation technique. The fabricated cells were annealed at 573K for periods of 60, 120 and 180 minutes. The structural properties of the solar cells have been studied by using X-ray diffraction. Capacitance- voltage measurements were studied for the as-prepared and annealed cells at a frequency of 102 Hz. The capacitance- voltage measurements indicated that these cells are abrupt. The capacitance decreases with increasing annealing time. The zero bias depletion region width and the carrier concentration increased with increasing annealing time. The carrier transport mechanism for the CdS/CdTe heterojunction in dark is tunneling recombination. The ideality factor is 1.56 and the reverse bias saturation current is 9.6×10-10A. The energy band lineup for the n- CdS/p-CdTe heterojunction was investigated using current - voltage and capacitance - voltage characteristics.

Keywords: SnO2/CdS/CdTe heterojunction, XRD, C-V measurement, I-V measurement, energy band diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3664
975 A Case Study of Limited Dynamic Voltage Frequency Scaling in Low-Power Processors

Authors: Hwan Su Jung, Ahn Jun Gil, Jong Tae Kim

Abstract:

Power management techniques are necessary to save power in the microprocessor. By changing the frequency and/or operating voltage of processor, DVFS can control power consumption. In this paper, we perform a case study to find optimal power state transition for DVFS. We propose the equation to find the optimal ratio between executions of states while taking into account the deadline of processing time and the power state transition delay overhead. The experiment is performed on the Cortex-M4 processor, and average 6.5% power saving is observed when DVFS is applied under the deadline condition.

Keywords: Deadline, Dynamic Voltage Frequency Scaling, Power State Transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
974 Depletion Layer Parameters of Al-MoO3-P-CdTe-Al MOS Structures

Authors: A. C. Sarmah

Abstract:

The Al-MoO3-P-CdTe-Al MOS sandwich structures were fabricated by vacuum deposition method on cleaned glass substrates. Capacitance versus voltage measurements were performed at different frequencies and sweep rates of applied voltages for oxide and semiconductor films of different thicknesses. In the negative voltage region of the C-V curve a high differential capacitance of the semiconductor was observed and at high frequencies (<10 kHz) the transition from accumulation to depletion and further to deep depletion was observed as the voltage was swept from negative to positive. A study have been undertaken to determine the value of acceptor density and some depletion layer parameters such as depletion layer capacitance, depletion width, impurity concentration, flat band voltage, Debye length, flat band capacitance, diffusion or built-in-potential, space charge per unit area etc. These were determined from C-V measurements for different oxide and semiconductor thicknesses.

Keywords: Debye length, Depletion width, flat band capacitance, impurity concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
973 Bias Optimization of Mach-Zehnder Modulator Considering RF Gain on OFDM Radio-Over-Fiber System

Authors: Ghazi Al Sukkar, Yazid Khattabi, Shifen Zhong

Abstract:

Most of the recent wireless LANs, broadband access networks, and digital broadcasting use Orthogonal Frequency Division Multiplexing techniques. In addition, the increasing demand of Data and Internet makes fiber optics an important technology, as fiber optics has many characteristics that make it the best solution for transferring huge frames of Data from a point to another. Radio over fiber is the place where high quality RF is converted to optical signals over single mode fiber. Optimum values for the bias level and the switching voltage for Mach-Zehnder modulator are important for the performance of radio over fiber links. In this paper, we propose a method to optimize the two parameters simultaneously; the bias and the switching voltage point of the external modulator of a radio over fiber system considering RF gain. Simulation results show the optimum gain value under these two parameters.

Keywords: OFDM, Mach Zehnder Bias Voltage, switching voltage, radio-over-fiber, RF gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
972 Seismic Behaviour of RC Knee Joints in Closing and Opening Actions

Authors: S. Mogili, J. S. Kuang, N. Zhang

Abstract:

Knee joints, the beam column connections found at the roof level of a moment resisting frame buildings, are inherently different from conventional interior and exterior beam column connections in the way that forces from adjoining members are transferred into joint and then resisted by the joint. A knee connection has two distinct load resisting mechanisms, each for closing and opening actions acting simultaneously under reversed cyclic loading. In spite of many distinct differences in the behaviour of shear resistance in knee joints, there are no special design provisions in the major design codes available across the world due to lack of in-depth research on the knee connections. To understand the relative importance of opening and closing actions in design, it is imperative to study knee joints under varying shear stresses, especially at higher opening-to-closing shear stress ratios. Three knee joint specimens, under different input shear stresses, were designed to produce a varying ratio of input opening to closing shear stresses. The design was carried out in such a way that the ratio of flexural strength of beams with consideration of axial forces in opening to closing actions are maintained at 0.5, 0.7, and 1.0, thereby resulting in the required variation of opening to closing joint shear stress ratios among the specimens. The behaviour of these specimens was then carefully studied in terms of closing and opening capacities, hysteretic behaviour, and envelope curves to understand the differences in joint performance based on which an attempt to suggest design guidelines for knee joints is made emphasizing the relative importance of opening and closing actions. Specimens with relatively higher opening stresses were observed to be more vulnerable under the action of seismic loading.

Keywords: Knee-joints, large-scale testing, opening and closing shear stresses, seismic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
971 Application of Neuro-Fuzzy Dynamic Programming to Improve the Reactive Power and Voltage Profile of a Distribution Substation

Authors: M. Tarafdar Haque, S. Najafi

Abstract:

Improving the reactive power and voltage profile of a distribution substation is investigated in this paper. The purpose is to properly determination of the shunt capacitors on/off status and suitable tap changer (TC) position of a substation transformer. In addition, the limitation of secondary bus voltage, the maximum allowable number of switching operation in a day for on load tap changer and on/off status of capacitors are taken into account. To achieve these goals, an artificial neural network (ANN) is designed to provide preliminary scheduling. Input of ANN is active and reactive powers of transformer and its primary and secondary bus voltages. The output of ANN is capacitors on/off status and TC position. The preliminary schedule is further refined by fuzzy dynamic programming in order to reach the final schedule. The operation of proposed method in Q/V improving is compared with the results obtained by operator operation in a distribution substation.

Keywords: Neuro-fuzzy, Dynamic programming, Reactive power, Voltage profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
970 Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge

Authors: Sabah I. Wais, Raghad Y. Mohammed, Sedki O. Yousif

Abstract:

The influence of axial magnetic field (B=0.48 T) on the variation of ionization efficiency coefficient h and secondary electron emission coefficient g with respect to reduced electric field E/P is studied at a new range of plane-parallel electrode spacing (0< d< 20 cm) and different nitrogen working pressure between 0.5-20 Pa. The axial magnetic field is produced from an inductive copper coil of radius 5.6 cm. The experimental data of breakdown voltage is adopted to estimate the mean Paschen curves at different working features. The secondary electron emission coefficient is calculated from the mean Paschen curve and used to determine the minimum breakdown voltage. A reduction of discharge voltage of about 25% is investigated by the applied of axial magnetic field. At high interelectrode spacing, the effect of axial magnetic field becomes more significant for the obtained values of h but it was less for the values of g.

Keywords: Paschen curve, Townsend coefficient, Secondaryelectron emission, Magnetic field, Minimum breakdown voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
969 A Soft Switching PWM DC-DC Boost Converter with Increased Efficiency by Using ZVT-ZCT Techniques

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

In this paper, an improved active snubber cell is proposed on account of soft switching (SS) family of pulse width modulation (PWM) DC-DC converters. The improved snubber cell provides zero-voltage transition (ZVT) turn on and zero-current transition (ZCT) turn off for main switch. The snubber cell decreases EMI noise and operates with SS in a wide range of line and load voltages. Besides, all of the semiconductor devices in the converter operate with SS. There is no additional voltage and current stress on the main devices. Additionally, extra voltage stress does not occur on the auxiliary switch and its current stress is acceptable value. The improved converter has a low cost and simple structure. The theoretical analysis of converter is clarified and the operating states are given in detail. The experimental results of converter are obtained by prototype of 500 W and 100 kHz. It is observed that the experimental results and theoretical analysis of converter are suitable with each other perfectly.

Keywords: Active snubber cells, DC-DC converters, zero-voltage transition, zero-current transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
968 Hardware-in-the-Loop Test for Automatic Voltage Regulator of Synchronous Condenser

Authors: Ha Thi Nguyen, Guangya Yang, Arne Hejde Nielsen, Peter Højgaard Jensen

Abstract:

Automatic voltage regulator (AVR) plays an important role in volt/var control of synchronous condenser (SC) in power systems. Test AVR performance in steady-state and dynamic conditions in real grid is expensive, low efficiency, and hard to achieve. To address this issue, we implement hardware-in-the-loop (HiL) test for the AVR of SC to test the steady-state and dynamic performances of AVR in different operating conditions. Startup procedure of the system and voltage set point changes are studied to evaluate the AVR hardware response. Overexcitation, underexcitation, and AVR set point loss are tested to compare the performance of SC with the AVR hardware and that of simulation. The comparative results demonstrate how AVR will work in a real system. The results show HiL test is an effective approach for testing devices before deployment and is able to parameterize the controller with lower cost, higher efficiency, and more flexibility.

Keywords: Automatic voltage regulator, hardware-in-the-loop, synchronous condenser, real time digital simulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
967 Transient Voltage Distribution on the Single Phase Transmission Line under Short Circuit Fault Effect

Authors: A. Kojah, A. Nacaroğlu

Abstract:

Single phase transmission lines are used to transfer data or energy between two users. Transient conditions such as switching operations and short circuit faults cause the generation of the fluctuation on the waveform to be transmitted. Spatial voltage distribution on the single phase transmission line may change owing to the position and duration of the short circuit fault in the system. In this paper, the state space representation of the single phase transmission line for short circuit fault and for various types of terminations is given. Since the transmission line is modeled in time domain using distributed parametric elements, the mathematical representation of the event is given in state space (time domain) differential equation form. It also makes easy to solve the problem because of the time and space dependent characteristics of the voltage variations on the distributed parametrically modeled transmission line.

Keywords: Energy transmission, transient effects, transmission line, transient voltage, RLC short circuit, single phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
966 Low Voltage Squarer Using Floating Gate MOSFETs

Authors: Rishikesh Pandey, Maneesha Gupta

Abstract:

A new low-voltage floating gate MOSFET (FGMOS) based squarer using square law characteristic of the FGMOS is proposed in this paper. The major advantages of the squarer are simplicity, rail-to-rail input dynamic range, low total harmonic distortion, and low power consumption. The proposed circuit is biased without body effect. The circuit is designed and simulated using SPICE in 0.25μm CMOS technology. The squarer is operated at the supply voltages of ±0.75V . The total harmonic distortion (THD) for the input signal 0.75Vpp at 25 KHz, and maximum power consumption were found to be less than 1% and 319μW respectively.

Keywords: Analog signal processing, floating gate MOSFETs, low-voltage, Spice, squarer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944