Search results for: Titanium dioxide (TiO2).
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 381

Search results for: Titanium dioxide (TiO2).

231 High Efficiency Perovskite Solar Cells Fabricated under Ambient Conditions with Mesoporous TiO2/In2O3 Scaffold

Authors: A. Apostolopoulou, D. Sygkridou, A. N. Kalarakis, E. Stathatos

Abstract:

Mesoscopic perovskite solar cells (mp-PSCs) with mesoporous bilayer were fabricated under ambient conditions. The bilayer was formed by capping the mesoporous TiO2 layer with a layer of In2O3. CH3NH3I3-xClx mixed halide perovskite was prepared through the one-step method and was used as the light absorber. The mp-PSCs with the composite TiO2/In2O3 mesoporous layer exhibited optimized electrical parameters, compared with the PSCs that employed only a TiO2 mesoporous layer, with a current density of 23.86 mA/cm2, open circuit voltage of 0.863 V, fill factor of 0.6 and a power conversion efficiency of 11.2%. These results indicate that the formation of a proper semiconductor capping layer over the basic TiO2 mesoporous layer can facilitate the electron transfer, suppress the recombination and subsequently lead to higher charge collection efficiency.

Keywords: Ambient conditions, high efficiency solar cells, mesoscopic perovskite solar cells, TiO2/In2O3 bilayer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
230 Chips of Ti-6Al-2Sn-4Zr-6Mo Alloy – A Detailed Geometry Study

Authors: Dmytro Ostroushko, Karel Saksl, Carsten Siemers, Zuzana Rihova

Abstract:

Titanium alloys like Ti-6Al-2Sn-4Zr-6Mo (Ti- 6246) are widely used in aerospace applications. Component manufacturing, however, is difficult and expensive as their machinability is extremely poor. A thorough understanding of the chip formation process is needed to improve related metal cutting operations.In the current study, orthogonal cutting experiments have been performed and theresulting chips were analyzed by optical microscopy and scanning electron microscopy.Chips from aTi- 6246ingot were produced at different cutting speeds and cutting depths. During the experiments, depending of the cutting conditions, continuous or segmented chips were formed. Narrow, highly deformed and grain oriented zones, the so-called shear zone, separated individual segments. Different material properties have been measured in the shear zones and the segments.

Keywords: Titanium alloy, Ti-6246, chip formation, machining, shear zone, microstructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
229 Precipitation Hardening Behavior of Directly Cold Rolled Al-6Mg Alloy Containing Ternary Sc and Quaternary Zi/Ti

Authors: M. S. Kaiser

Abstract:

Ageing of 75% cold rolled Al-6Mg alloy with ternary 0.4 wt% scandium and quaternary zirconium and titanium has been carried out. Alloy samples are naturally, isochronally and isothermally aged for different time and temperatures. Hardness values of the differently processed alloys have been measured to understand the ageing behavior of Al-6Mg alloy with scandium and quaternary zirconium and titanium addition. Resistivity changes with annealing time and temperature were measured to understand the precipitation behavior and recovery of strain of the alloy. Attempts were also made to understand the grain refining effect of scandium in Al-6Mg alloy. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides and the dendrites of the Al-6Mg alloy have been refined significantly due to addition of scandium.

Keywords: Al-Mg alloys, age hardening, resistivity, metastable phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
228 Artificial Neural Network Application on Ti/Al Joint Using Laser Beam Welding – A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan

Abstract:

Today automobile and aerospace industries realise Laser Beam Welding for a clean and non contact source of heating and fusion for joining of sheets. The welding performance is mainly based on by the laser welding parameters. Some concepts related to Artificial Neural Networks and how can be applied to model weld bead geometry and mechanical properties in terms of equipment parameters are reported in order to evaluate the accuracy and compare it with traditional modeling schemes. This review reveals the output features of Titanium and Aluminium weld bead geometry and mechanical properties such as ultimate tensile strength, yield strength, elongation and reduction of the area of the weld using Artificial Neural Network.

Keywords: Laser Beam Welding (LBW), Artificial Neural Networks (ANN), Optimization, Titanium and Aluminium sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
227 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation

Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina

Abstract:

An unconventional composite inorganic ceramic membrane capable of enhancing carbon dioxide emission decline was fabricated and tested at laboratory scale in conformism to various environmental guidelines and also to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms is presented. Single gas permeation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous support was carried out to investigate individual gas permeation behaviours at different pressures at room temperature. Membrane fabrication was achieved using after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However above a pressure of 3bar, CO2 permeability ratio to that of the other gases indicated control of a more selective surface adsorptive transport mechanism.

Keywords: Carbon dioxide composite inorganic membranes, permeability, transport mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
226 Prospects in Waste Oil Shale Ash Sustainable Valorization

Authors: Olga Velts, Mai Uibu, Juha Kallas, Rein Kuusik

Abstract:

An innovative approach utilizing highly alkaline oil shale waste ash and carbon dioxide gas (CO2), associated with power production, as a resource for production of precipitated calcium carbonate (PCC) is introduced in this paper. The specifics and feasibility of the integrated ash valorization and CO2 sequestration process by indirect aqueous carbonation of lime-consisting ash were elaborated and the main parameters established. Detailed description of the formed precipitates was included. Complimentary carbonation experiments with commercial CaO fine powder were conducted for comparative characterization of the final products obtained on the basis of two different raw materials. Finally, the expected CO2 uptake was evaluated.

Keywords: Calcium Carbonate, Carbon Dioxide Sequestration, Oil Shale Ash, Waste Valorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
225 Energy Supply, Demand and Environmental Analysis – A Case Study of Indian Energy Scenario

Authors: I.V. Saradhi, G.G. Pandit, V.D. Puranik

Abstract:

Increasing concerns over climate change have limited the liberal usage of available energy technology options. India faces a formidable challenge to meet its energy needs and provide adequate energy of desired quality in various forms to users in sustainable manner at reasonable costs. In this paper, work carried out with an objective to study the role of various energy technology options under different scenarios namely base line scenario, high nuclear scenario, high renewable scenario, low growth and high growth rate scenario. The study has been carried out using Model for Energy Supply Strategy Alternatives and their General Environmental Impacts (MESSAGE) model which evaluates the alternative energy supply strategies with user defined constraints on fuel availability, environmental regulations etc. The projected electricity demand, at the end of study period i.e. 2035 is 500490 MWYr. The model predicted the share of the demand by Thermal: 428170 MWYr, Hydro: 40320 MWYr, Nuclear: 14000 MWYr, Wind: 18000 MWYr in the base line scenario. Coal remains the dominant fuel for production of electricity during the study period. However, the import dependency of coal increased during the study period. In baseline scenario the cumulative carbon dioxide emissions upto 2035 are about 11,000 million tones of CO2. In the scenario of high nuclear capacity the carbon dioxide emissions reduced by 10 % when nuclear energy share increased to 9 % compared to 3 % in baseline scenario. Similarly aggressive use of renewables reduces 4 % of carbon dioxide emissions.

Keywords: Carbon dioxide, energy, electricity, message.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722
224 Effect of Butt Joint Distortion and Comparison Study on Ti/Al Dissimilar Metal Using Laser Beam Welding

Authors: K. Kalaiselvan, A. Elango

Abstract:

In general, it is desirable to finish the weld quickly, before a large volume of surrounding metal heats up and expands. The welding process used, type, welding current and speed of travel, thus, affect the degree of shrinkage and distortion of a weldment. The use of mechanized welding equipment reduces welding time, metal affected zone and consequently distortion. This article helps to define what weld distortion is and then provide a practical understanding of the causes of distortion, effects of shrinkage in butt joint welded assemblies using TI6AL4VA and Aluminium AA2024 alloy sheet. The beam offset position to the joint interface towards titanium and aluminium side. The factors affecting distortion during welding is also given. Test results reveal that welding speed is the significant parameter to decide the extent of distortion. Also welding from Al side reduces the distortion while Ti side increases the distortion.

Keywords: Nd:YAG Pulsed laser welding, Titanium/Aluminium thin sheet butt joint, distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
223 Effects of Increased Green Surface on a Densely Built Urban Fabric: The Case of Budapest

Authors: Viktória Sugár, Orsolya Frick, Gabriella Horváth, A. Bendegúz Vöröss, Péter Leczovics, Géza Baráth

Abstract:

Urban greenery has multiple positive effects both on the city and its residents. Apart from the visual advantages, it changes the micro-climate by cooling and shading, also increasing vapor and oxygen, reducing dust and carbon-dioxide content at the same time. The above are all critical factors of livability of an urban fabric. Unfortunately, in a dense, historical district there are restricted possibilities to build green surfaces. The present study collects and systemizes the applicable green solutions in the case of a historical downtown district of Budapest. The study contains a GIS-based measurement of the eligible surfaces for greenery, and also calculates the potential of oxygen production, carbon-dioxide reduction and cooling effect of an increased green surface.  It can be concluded that increasing the green surface has measurable effects on a densely built urban fabric, including air quality, micro-climate and other environmental factors.

Keywords: Urban greenery, green roof, green wall, green surface potential, sustainable city, oxygen production, carbon-dioxide reduction, geographical information system, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
222 Hybrid Power – Application for Tourism in Isolated Areas

Authors: Aurelian Octavian Ciucâ, Ioan Bitir-Istrate, Mircea Scripcariu

Abstract:

The rapidly increasing costs of power line extensions and fossil fuel, combined with the desire to reduce carbon dioxide emissions pushed the development of hybrid power system suited for remote locations, the purpose in mind being that of autonomous local power systems. The paper presents the suggested solution for a “high penetration" hybrid power system, it being determined by the location of the settlement and its “zero policy" on carbon dioxide emissions. The paper focuses on the technical solution and the power flow management algorithm of the system, taking into consideration local conditions of development.

Keywords: Renewable energy, hybrid power system, wind turbine, photovoltaic panels, bio-diesel cogeneration, bio-fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
221 Mechanical Evaluation of Stainless Steel and Titanium Dynamic Hip Screws for Trochanteric Fracture

Authors: Supakit Rooppakhun, Nattapon Chantarapanich, Bancha Chernchujit, Banchong Mahaisavariya, Sedthawatt Sucharitpwatskul, Kriskrai Sitthiseripratip

Abstract:

This study aimed to present the mechanical performance evaluation of the dynamic hip screw (DHS) for trochanteric fracture by means of finite element method. The analyses were performed based on stainless steel and titanium implant material definitions at various stages of bone healing and including implant removal. The assessment of the mechanical performance used two parameters, von Mises stress to evaluate the strength of bone and implant and elastic strain to evaluate fracture stability. The results show several critical aspects of dynamic hip screw for trochanteric fracture stabilization. In the initial stage of bone healing process, partial weight bearing should be applied to avoid the implant failure. In the late stage of bone healing, stainless steel implant should be removed.

Keywords: Trochanteric fracture, Dynamic hip screw (DHS), Finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772
220 Impact of Gate Insulation Material and Thickness on Pocket Implanted MOS Device

Authors: Muhibul Haque Bhuyan

Abstract:

This paper reports on the impact study with the variation of the gate insulation material and thickness on different models of pocket implanted sub-100 nm n-MOS device. The gate materials used here are silicon dioxide (SiO2), aluminum silicate (Al2SiO5), silicon nitride (Si3N4), alumina (Al2O3), hafnium silicate (HfSiO4), tantalum pentoxide (Ta2O5), hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and lanthanum oxide (La2O3) upon a p-type silicon substrate material. The gate insulation thickness was varied from 2.0 nm to 3.5 nm for a 50 nm channel length pocket implanted n-MOSFET. There are several models available for this device. We have studied and simulated threshold voltage model incorporating drain and substrate bias effects, surface potential, inversion layer charge, pinch-off voltage, effective electric field, inversion layer mobility, and subthreshold drain current models based on two linear symmetric pocket doping profiles. We have changed the values of the two parameters, viz. gate insulation material and thickness gradually fixing the other parameter at their typical values. Then we compared and analyzed the simulation results. This study would be helpful for the nano-scaled MOS device designers for various applications to predict the device behavior.

Keywords: Linear symmetric pocket profile, pocket implanted n-MOS Device, model, impact of gate material, insulator thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 333
219 Statistical Analysis-Driven Risk Assessment of Criteria Air Pollutants: A Sulfur Dioxide Case Study

Authors: Ehsan Bashiri

Abstract:

A 7-step method (with 25 sub-steps) to assess risk of air pollutants is introduced. These steps are: pre-considerations, sampling, statistical analysis, exposure matrix and likelihood, doseresponse matrix and likelihood, total risk evaluation, and discussion of findings. All mentioned words and expressions are wellunderstood; however, almost all steps have been modified, improved, and coupled in such a way that a comprehensive method has been prepared. Accordingly, the SADRA (Statistical Analysis-Driven Risk Assessment) emphasizes extensive and ongoing application of analytical statistics in traditional risk assessment models. A Sulfur Dioxide case study validates the claim and provides a good illustration for this method.

Keywords: Criteria air pollutants, Matrix of risk, Riskassessment, Statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
218 Valuing Environmental Impact of Air Pollution in Moscow with Hedonic Prices

Authors: V. Komarova

Abstract:

The main purpose of this research is the calculation of implicit prices of the environmental level of air quality in the city of Moscow on the basis of housing property prices. The database used contains records of approximately 20 thousand apartments and has been provided by a leading real estate agency operating in Russia. The explanatory variables include physical characteristics of the houses, environmental (industry emissions), neighbourhood sociodemographic and geographic data: GPS coordinates of each house. The hedonic regression results for ecological variables show «negative» prices while increasing the level of air contamination from such substances as carbon monoxide, nitrogen dioxide, sulphur dioxide, and particles (CO, NO2, SO2, TSP). The marginal willingness to pay for higher environmental quality is presented for linear and log-log models.

Keywords: Air pollution, environment, hedonic prices, real estate, willingness to pay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
217 Analyses of Wear Mechanisms Occurring During Machining of the Titanium Alloy Ti- 6Al-2Sn-4Zr-6Mo

Authors: Z. Rihova, K. Saksl, C. Siemers, D. Ostroushko

Abstract:

Titanium alloys like the modern alloy Ti 6Al 2Sn 4Zr 6Mo (Ti-6246) combine excellent specific mechanical properties and corrosion resistance. On the other hand,due to their material characteristics, machining of these alloys is difficult to perform. The aim of the current study is the analyses of wear mechanisms of coated cemented carbide tools applied in orthogonal cutting experiments of Ti-6246 alloy. Round bars were machined with standard coated tools in dry conditions on a CNC latheusing a wide range of cutting speeds and cutting depths. Tool wear mechanisms were afterwards investigated by means of stereo microscopy, optical microscopy, confocal microscopy and scanning electron microscopy. Wear mechanisms included fracture of the tool tip (total failure) and abrasion. Specific wear features like crater wear, micro cracks and built-up edgeformation appeared depending of the mechanical and thermal conditions generated in the workpiece surface by the cutting action.

Keywords: Alloy 6246, machining, tool wear, optical microscopy, SEM, EDX analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
216 Two Phase Frictional Pressure Drop of Carbon Dioxide in Horizontal Micro Tubes

Authors: M. Tarawneh

Abstract:

Two-phase frictional pressure drop data were obtained for condensation of carbon dioxide in single horizontal micro tube of inner diameter ranged from 0.6 mm up to 1.6 mm over mass flow rates from 2.5*10-5 to 17*10-5 kg/s and vapor qualities from 0.0 to 1.0. The inlet condensing pressure is changed from 33.5 to 45 bars. The saturation temperature ranged from -1.5 oC up to 10 oC. These data have then been compared against three (two-phase) frictional pressure drop prediction methods. The first method is by Muller-Steinhagen and Heck (Muller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process 1986;20:297–308) and that by Gronnerud R. Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type evaporators, part IV: two-phase flow resistance in boiling refrigerants, Annexe 1972. Then the method used by FriedelL. Improved friction pressures drop in horizontal and vertical two-phase pipe flow. European Two-Phase Flow Group Meeting, Paper E2; 1979 June, Ispra, Italy. The methods are used by M.B Ould Didi et al (2001) “Prediction of two-phase pressure gradients of refrigerant in horizontal tubes". Int.J.of Refrigeration 25(2002) 935- 947. The best available method for annular flow was that of Muller- Steinhagen and Heck. It was observed that the peak in the two-phase frictional pressure gradient is at high vapor qualities.

Keywords: Two-phase flow, frictional pressure drop, horizontalmicro tube, carbon dioxide, condensers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3308
215 Preservation of Carbon Dioxide Clathrate Hydrate Coexisting with Sucrose at Temperatures below the Water Freezing Point under Atmospheric Pressure

Authors: Tadaaki Sato, Ryo Ohmura

Abstract:

This paper reports the influence of sucrose on the preservation of CO2 hydrate crystal samples. The particle diameter of hydrate samples were 1.0 and 5.6-8.0 mm. Mass fraction of sucrose in the sample was 0.16. The samples were stored at the aerated condition under atmospheric pressure and at the temperature of 253 or 258 K. The results indicated that the mass fractions of CO2 hydrate in the samples with sucrose were 0.10 ± 0.03 at the end of 3-week preservation, regardless of temperature and particle diameter. Mass fraction of CO2 hydrate in the samples with sucrose was higher than that of pure CO2 hydrate for 1.0 mm particle diameter, while was lower than that of pure CO2 hydrate for 5.6-8.0 mm particle diameter. Discussion is made on the influence of sucrose on the dissociation of CO2 hydrate and the resulting formation of ice.

Keywords: Clathrate hydrates, Carbon dioxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
214 Literature Review on Metallurgical Properties of Ti/Al Weld Joint Using Laser Beam Welding

Authors: K. Kalaiselvan, Naresh Subramania Warrier, S. Elavarasi

Abstract:

Several situations arise in industrial practice which calls for joining of dissimilar metals. With increasing demand in the application requirements, dissimilar metal joining becomes inevitable in modern engineering industries. The metals employed are the structure for effective and utilization of the special properties of each metal. The purpose of this paper is to present the research and development status of titanium (Ti) and aluminium (Al) dissimilar alloys weldment by the researchers worldwide. The detailed analysis of problems faced during welding of dissimilar metal joint for Ti/Al metal combinations are discussed. Microstructural variations in heat affected zone (HAZ), fusion zone (FZ), Intermetallic compound (IMC) layer and surface fracture of weldments are analysed. Additionally, mechanical property variations and microstructural feature have been studied by the researchers. The paper provides a detailed literature review of Ti/Al dissimilar metal joint microchemistry and property variation across the weldment.

Keywords: Laser beam welding, titanium, aluminium, metallurgical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 383
213 Development of Sustainable Building Environmental Model (SBEM) in Hong Kong

Authors: Kwok W. Mui, Ling T. Wong, F. Xiao, Chin T. Cheung, Ho C. Yu

Abstract:

This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption; they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%. 

Keywords: —Sustainable building environmental model (SBEM), adaptive comfort temperature (ACT), new demand control ventilation (nDCV), energy saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
212 Characteristics of Wall Thickness Increase in Pipe Reduction Process using Planetary Rolls

Authors: Yuji Kotani, Shunsuke Kanai, Hisaki Watari

Abstract:

In recent years, global warming has become a worldwide problem. The reduction of carbon dioxide emissions is a top priority for many companies in the manufacturing industry. In the automobile industry as well, the reduction of carbon dioxide emissions is one of the most important issues. Technology to reduce the weight of automotive parts improves the fuel economy of automobiles, and is an important technology for reducing carbon dioxide. Also, even if this weight reduction technology is applied to electric automobiles rather than gasoline automobiles, reducing energy consumption remains an important issue. Plastic processing of hollow pipes is one important technology for realizing the weight reduction of automotive parts. Ohashi et al. [1],[2] present an example of research on pipe formation in which a process was carried out to enlarge a pipe diameter using a lost core, achieving the suppression of wall thickness reduction and greater pipe expansion than hydroforming. In this study, we investigated a method to increase the wall thickness of a pipe through pipe compression using planetary rolls. The establishment of a technology whereby the wall thickness of a pipe can be controlled without buckling the pipe is an important technology for the weight reduction of products. Using the finite element analysis method, we predicted that it would be possible to increase the compression of an aluminum pipe with a 3mm wall thickness by approximately 20%, and wall thickness by approximately 20% by pressing the hollow pipe with planetary rolls.

Keywords: Pipe-Forming, Wall Thickness, Finite-element-method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2939
211 Effect of Cooling Approaches on Chemical Compositions, Phases, and Acidolysis of Panzhihua Titania Slag

Authors: Bing Song, Kexi Han, Xuewei Lv

Abstract:

Titania slag is a high quality raw material containing titanium in the subsequent process of titanium pigment. The effects of cooling approaches of granulating, water cooling, and air cooling on chemical, phases, and acidolysis of Panzhihua titania slag were investigated. Compared to the original slag which was prepared by the conventional processing route, the results show that the titania slag undergoes oxidation of Ti3+during different cooling ways. The Ti2O3 content is 17.50% in the original slag, but it is 16.55% and 16.84% in water cooled and air-cooled slag, respectively. Especially, the Ti2O3 content in granulated slag is decreased about 27.6%. The content of Fe2O3 in granulated slag is approximately 2.86% also obviously higher than water (<0.5%) or air-cooled slag (<0.5%). Rutile in cooled titania slag was formed because of the oxidation of Ti3+. The rutile phase without a noticeable change in water cooled and air-cooled slag after the titania slag was cooled, but increased significantly in the granulated slag. The rate of sulfuric acid acidolysis of cooled slag is less than the original slag. The rate of acidolysis is 90.61% and 92.46% to the water-cooled slag and air-cooled slag, respectively. However, the rate of acidolysis of the granulated slag is less than that of industry slag about 20%, only 74.72%.

Keywords: Cooling approaches, titania slag, granulating, sulfuric acid acidolysis,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
210 Effect of Chlorophyll Concentration Variations from Extract of Papaya Leaves on Dye-Sensitized Solar Cell

Authors: Eka Maulana, Sholeh Hadi Pramono, Dody Fanditya, M. Julius

Abstract:

In this paper, extract of papaya leaves are used as a natural dye and combined by variations of solvent concentration applied on DSSC (Dye-Sensitized Solar Cell). Indonesian geographic located on the equator line occasions the magnitude of the potential to develop organic solar cells made from extracts of chlorophyll as a substitute for inorganic materials or synthetic dye on DSSC material. Dye serves as absorbing photons which are then converted into electrical energy. A conductive coated glass layer called TCO (Transparent Conductive Oxide) is used as a substrate of electrode. TiO2 nanoparticles as binding dye molecules, redox couple iodide/ tri-iodide as the electrolyte and carbon as the counter electrode in the DSSC are used. TiO2 nanoparticles, organic dyes, electrolytes, and counter electrode are arranged and combined with the layered structure of the photo-catalyst absorption layer. Dye absorption measurements using a spectrophotometer at 400-800 nm light spectrum produces a total amount of chlorophyll 80.076 mg/l. The test cell at 7 watt LED light with 5000 lux luminescence was obtained Voc and Isc of 235.5 mV and 14 μA, respectively.

Keywords: DSSC (Dye-Sensitized Solar Cell), natural dye, chlorophyll, absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2904
209 Influence of Build Orientation on Machinability of Selective Laser Melted Titanium Alloy-Ti-6Al-4V

Authors: Manikandakumar Shunmugavel, Ashwin Polishetty, Moshe Goldberg, Junior Nomani, Guy Littlefair

Abstract:

Selective laser melting (SLM), a promising additive manufacturing (AM) technology, has a huge potential in the fabrication of Ti-6Al-4V near-net shape components. However, poor surface finish of the components fabricated from this technology requires secondary machining to achieve the desired accuracy and tolerance. Therefore, a systematic understanding of the machinability of SLM fabricated Ti-6Al-4V components is paramount to improve the productivity and product quality. Considering the significance of machining in SLM fabricated Ti-6Al-4V components, this research aim is to study the influence of build orientation on machinability characteristics by performing low speed orthogonal cutting tests. In addition, the machinability of SLM fabricated Ti-6Al-4V is compared with conventionally produced wrought Ti-6Al-4V to understand the influence of SLM technology on machining. This paper is an attempt to provide evidence to the hypothesis associated that build orientation influences cutting forces, chip formation and surface integrity during orthogonal cutting of SLM Ti-6Al-4V samples. Results obtained from the low speed orthogonal cutting tests highlight the practical importance of microstructure and build orientation on machinability of SLM Ti-6Al-4V.

Keywords: Additive manufacturing, build orientation, machinability, titanium alloys (Ti-6Al-4V).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
208 An Evaluation of Carbon Dioxide Emissions Trading among Enterprises -The Tokyo Cap and Trade Program-

Authors: Hiroki Satou, Kayoko Yamamoto

Abstract:

This study aims to propose three evaluation methods to evaluate the Tokyo Cap and Trade Program when emissions trading is performed virtually among enterprises, focusing on carbon dioxide (CO2), which is the only emitted greenhouse gas that tends to increase. The first method clarifies the optimum reduction rate for the highest cost benefit, the second discusses emissions trading among enterprises through market trading, and the third verifies long-term emissions trading during the term of the plan (2010-2019), checking the validity of emissions trading partly using Geographic Information Systems (GIS). The findings of this study can be summarized in the following three points. 1. Since the total cost benefit is the greatest at a 44% reduction rate, it is possible to set it more highly than that of the Tokyo Cap and Trade Program to get more total cost benefit. 2. At a 44% reduction rate, among 320 enterprises, 8 purchasing enterprises and 245 sales enterprises gain profits from emissions trading, and 67 enterprises perform voluntary reduction without conducting emissions trading. Therefore, to further promote emissions trading, it is necessary to increase the sales volumes of emissions trading in addition to sales enterprises by increasing the number of purchasing enterprises. 3. Compared to short-term emissions trading, there are few enterprises which benefit in each year through the long-term emissions trading of the Tokyo Cap and Trade Program. Only 81 enterprises at the most can gain profits from emissions trading in FY 2019. Therefore, by setting the reduction rate more highly, it is necessary to increase the number of enterprises that participate in emissions trading and benefit from the restraint of CO2 emissions.

Keywords: Emissions Trading, Tokyo Cap and Trade Program, Carbon Dioxide (CO2), Global Warming, Geographic Information Systems (GIS)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
207 Influence of Ball Milling Time on Mechanical Properties of Porous Ti-20Nb-5Ag Alloy

Authors: M. J. Shivaram, Shashi Bhushan Arya, Jagannath Nayak, Bharat Bhooshan Panigrahi

Abstract:

Titanium and its alloys have become more significant implant materials due to their mechanical properties, excellent biocompatibility and high corrosion resistance. Biomaterials can be produce by using the powder metallurgy (PM) methods and required properties can tailored by varying the processing parameters, such as ball milling time, space holder particles, and sintering temperature. The desired properties such as, structural and mechanical properties can be obtained by powder metallurgy method.  In the present study, deals with fabrication of solid and porous Ti-20Nb-5Ag alloy using high energy ball milling for different times (5 and 20 h). The resultant powder particles were used to fabricate solid and porous Ti-20Nb-5Ag alloy by adding space holder particles (NH4HCO3). The resultant powder particles, fabricated solid and porous samples were characterized by scanning electron microscopy (SEM). The compressive strength, elastic modulus and microhardness properties were investigated. Solid and porous Ti-20Nb-5Ag alloy samples showed good mechanical properties for 20 h ball milling time as compare to 5 h ball milling.

Keywords: Ball Milling, compressive strengths, microstructure, porous Titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
206 Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building

Authors: M. Kouhirostamkolaei, M. Kouhirostami, M. Sam, J. Woo, A. T. Asutosh, J. Li, C. Kibert

Abstract:

Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO2e to 11345 kg CO2/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings.

Keywords: Construction materials, green construction, energy simulation, carbon footprint, energy saving, concrete structure, DesignBuilder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
205 Parametric Analysis on Hydrogen Production using Mixtures of Pure Cellulosic and Calcium Oxide

Authors: N.A. Rashidi, S. Yusup, M.M. Ahmad

Abstract:

As the fossil fuels kept on depleting, intense research in developing hydrogen (H2) as the alternative fuel has been done to cater our tremendous demand for fuel. The potential of H2 as the ultimate clean fuel differs with the fossil fuel that releases significant amounts of carbon dioxide (CO2) into the surrounding and leads to the global warming. The experimental work was carried out to study the production of H2 from palm kernel shell steam gasification at different variables such as heating rate, steam to biomass ratio and adsorbent to biomass ratio. Maximum H2 composition which is 61% (volume basis) was obtained at heating rate of 100oCmin-1, steam/biomass of 2:1 ratio, and adsorbent/biomass of 1:1 ratio. The commercial adsorbent had been modified by utilizing the alcoholwater mixture. Characteristics of both adsorbents were investigated and it is concluded that flowability and floodability of modified CaO is significantly improved.

Keywords: Biomass gasification, Calcium oxide, Carbon dioxide capture, Sorbent flowability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
204 Energy Intensity of a Historical Downtown: Estimating the Energy Demand of a Budapest District

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the 7th district of Budapest -known as the former Jewish Quarter-, contains mainly historical style, multi-story tenement houses with courtyards. The high population density and the unsatisfactory energetic state of the buildings result high energy consumption. As a preliminary survey of a complex rehabilitation plan, the authors aim to determine the energy demand of the area. The energy demand was calculated by analyzing the structure and the energy consumption of each building by using Geographic Information System (GIS) methods. The carbon dioxide emission was also calculated, to assess the potential of reducing the present state value by complex structural and energetic rehabilitation. As a main focus of the survey, an energy intensity map has been created about the area.

Keywords: Carbon dioxide, energy intensity map, geographic information system, GIS, Hungary, Jewish quarter, rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
203 Performance Evaluation of an Inventive CO2 Gas Separation Inorganic Ceramic Membrane

Authors: Ngozi Nwogu, Mohammed Kajama, Edward Gobina

Abstract:

Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The tasks to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper, therefore, evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.

Keywords: Carbon dioxide, gas separation, inorganic ceramic membrane & perm selectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2928
202 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process

Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai

Abstract:

An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.

Keywords: Stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472