Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31014
Mechanical Evaluation of Stainless Steel and Titanium Dynamic Hip Screws for Trochanteric Fracture

Authors: Supakit Rooppakhun, Nattapon Chantarapanich, Bancha Chernchujit, Banchong Mahaisavariya, Sedthawatt Sucharitpwatskul, Kriskrai Sitthiseripratip


This study aimed to present the mechanical performance evaluation of the dynamic hip screw (DHS) for trochanteric fracture by means of finite element method. The analyses were performed based on stainless steel and titanium implant material definitions at various stages of bone healing and including implant removal. The assessment of the mechanical performance used two parameters, von Mises stress to evaluate the strength of bone and implant and elastic strain to evaluate fracture stability. The results show several critical aspects of dynamic hip screw for trochanteric fracture stabilization. In the initial stage of bone healing process, partial weight bearing should be applied to avoid the implant failure. In the late stage of bone healing, stainless steel implant should be removed.

Keywords: Finite Element Analysis, Trochanteric fracture, Dynamic hip screw (DHS)

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548


[1] R. Mohan, R. Karthikeyan, and S. V. Sonanis, "Dynamic hip screw: Does side make a difference? Effects of clockwise torque on right and left DHS," Injury, vol. 31, no. 9, pp. 697-699, 2000.
[2] M. Windolf, V. Braunstein, C. Dutoit, and K. Schwieger, "Is a helical shaped implant a superior alternative to the Dynamic Hip Screw for unstable femoral neck fractures? A biomechanical investigation", Clinical Biomechanics, vol. 24, no. 1, pp. 59-64, 2009.
[3] P. Helwig, G. Faust, U. Hindenlang, A. Hirschm├╝ller, L. Konstantinidis, C. Bahrs, N. S├╝dkamp, and R. Schneider, "Finite element analysis of four different implants inserted in different positions to stabilize an idealized trochanteric femoral fracture", Injury, vol. 40, no. 3, pp. 288- 295, 2009.
[4] T.C. Wong, Y. Chiu, W. L. Tsang, W. Y. Leung, and S. H. Yeung, "A double-blind, prospective, randomised, controlled clinical trial of minimally invasive dynamic hip screw fixation of intertrochanteric fractures", Injury, vol. 40, no. 4, pp. 422-427, 2009.
[5] A. Moroni, C. Faldini, F. Pegreffi, A. Hoang-Kim, F. Vannini, and S. Giannini, "Dynamic hip screw compared with external fixation for treatment of osteoporotic pertrochanteric fractures: A prospective, randomized study", J. Bone & Joint Surg. - Series A, vol. 87, no. 4, pp. 753-759, 2005.
[6] D. P. A. Jewell, S. Gheduzzi, M. S. Mitchell, and A. W. Miles, "Locking plates increase the strength of dynamic hip screws", Injury, vol. 39, no. 2, pp. 209-212, 2008.
[7] J. Auyeung, and O. Thomas, "Origami in dynamic hip screw surgery", Injury, vol. 35, no. 10, 2004, pp. 1039-1041.
[8] M. Güven, U. Yavuz, B. Kadioğlu, B. Akman, V. Kilinçoğlu, K. Unay, and F. Altintaş , "Importance of screw position in intertrochanteric femoral fractures treated by dynamic hip screw", Orthop & Traum: Surg & Res., vol. 96, no. 1, pp. 20-26, 2010.
[9] S. W. McLoughlin, D. L. Wheeler, J. Rider, and B. Bolhofner, "Biomechanical evaluation of the dynamic hip screw with two- and fourhole side plates", J. Orthop. Trauma, vol. 14, no. 5, pp. 318-323, 2000.
[10] A. Abalo, A. Dossim, , A. F. Ouro Bangna, K. Tomta, , A. Assiobo, and, A. Walla, "Dynamic hip screw and compression plate fixation of ipsilateral femoral neck and shaft fractures", J. Orthop Surg. (Hong Kong), vol. 16, no. 1, pp. 35-38, 2008.
[11] H. Pervez, , M. J. Parker, G. A. Pryor, L. Lutchman, and N. Chirodian, "Classification of trochanteric fracture of the proximal femur: A study of the reliability of current systems", Injury, vol. 33, no. 8, pp. 713-715, 2002.
[12] M. O. Heller, G. Bergmann, J. P. Kassi, , L. Claes, N. P. Haas, and G. N. Duda, "Determination of muscle loading at the hip joint for use in preclinical testing", J. Biomechanics, vol. 38, no. 5, pp. 1155-1163, 2005.
[13] K. Sitthiseripratip, H. V. Oosterwyck, , J. V. Sloten, B. Mahaisavariya, E. L .J. Bohez, , J. Suwanprateeb, R. Van Audekercke, and P. Oris: "Finite element study of trochanteric gamma nail for trochanteric fracture", Med. Eng. & Physics, vol. 25, no. 2, pp. 99-106, 2003.
[14] L. E. Claes, and, C. A. Heigele, "Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing", J. Biomechanics, vol. 2, no. 3, pp. 255-266, 1999.
[15] B. Mahaisavariya, K. Sitthiseripratip and J. Suwanprateeb, "Finite element study of the proximal femur with retained trochanteric gamma nail and after removal of nail", Injury, vol. 37, no. 8, pp. 778-785, 2006.
[16] G. Cheung, P. Zalzal, M. Bhandari, J. K. Spelt, and M. Papini, "Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading", Med. Eng. & Physics, vol. 26, no. 2, pp. 93-108, 2004.
[17] A. C. Godest, M. Beaugonin, E. Haug, M. Taylor, and P. J. Gregson, "Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis", J. Biomechanics, vol. 35, no. 2, pp. 267-275, 2002.
[18] M. R. Abdul-Kadir, U. Hansen, R. Klabunde, D. Lucas, and A. Amis, "Finite element modelling of primary hip stem stability: The effect of interference fit", J. Biomechanics, vol. 41, no. 3, pp. 587-594, 2008.
[19] G. N. Duda, M. Heller, J. Albinger, O. Schulz, E. Schneider, and L. Claes, "Influence of muscle forces on femoral strain distribution", J. Biomechanics, vol. 31, no. 9, pp. 841-846, 1998.
[20] T. W. Lu, S. J. G. Taylor, J. J. O'Connor, and P. S. Walker, "Influence of muscle activity on the forces in the femur: An in vivo study", J. Biomechanics, vol. 30, no. 11-12, pp. 1101-1106, 1997.