WASET
	%0 Journal Article
	%A M. Tarawneh
	%D 2013
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 77, 2013
	%T Two Phase Frictional Pressure Drop of Carbon Dioxide in Horizontal Micro Tubes
	%U https://publications.waset.org/pdf/12121
	%V 77
	%X Two-phase frictional pressure drop data were
obtained for condensation of carbon dioxide in single horizontal
micro tube of inner diameter ranged from 0.6 mm up to 1.6 mm over
mass flow rates from 2.5*10-5 to 17*10-5 kg/s and vapor qualities
from 0.0 to 1.0. The inlet condensing pressure is changed from 33.5
to 45 bars. The saturation temperature ranged from -1.5 oC up to 10
oC. These data have then been compared against three (two-phase)
frictional pressure drop prediction methods. The first method is by
Muller-Steinhagen and Heck (Muller-Steinhagen H, Heck K. A
simple friction pressure drop correlation for two-phase flow in pipes.
Chem. Eng. Process 1986;20:297–308) and that by Gronnerud R.
Investigation of liquid hold-up, flow-resistance and heat transfer in
circulation type evaporators, part IV: two-phase flow resistance in
boiling refrigerants, Annexe 1972. Then the method used by
FriedelL. Improved friction pressures drop in horizontal and vertical
two-phase pipe flow. European Two-Phase Flow Group Meeting,
Paper E2; 1979 June, Ispra, Italy. The methods are used by M.B Ould
Didi et al (2001) “Prediction of two-phase pressure gradients of
refrigerant in horizontal tubes". Int.J.of Refrigeration 25(2002) 935-
947. The best available method for annular flow was that of Muller-
Steinhagen and Heck. It was observed that the peak in the two-phase
frictional pressure gradient is at high vapor qualities.
	%P 812 - 819