Search results for: Robot Navigation
524 A Simulator for Robot Navigation Algorithms
Authors: Michael A. Folcik, Bijan Karimi
Abstract:
A robot simulator was developed to measure and investigate the performance of a robot navigation system based on the relative position of the robot with respect to random obstacles in any two dimensional environment. The presented simulator focuses on investigating the ability of a fuzzy-neural system for object avoidance. A navigation algorithm is proposed and used to allow random navigation of a robot among obstacles when the robot faces an obstacle in the environment. The main features of this simulator can be used for evaluating the performance of any system that can provide the position of the robot with respect to obstacles in the environment. This allows a robot developer to investigate and analyze the performance of a robot without implementing the physical robot.Keywords: Applications of Fuzzy Logic and Neural Networksin Robotics, Artificial Intelligence, Embedded Systems, MobileRobots, Robot Navigation, Robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755523 A Unified Framework for a Robust Conflict-Free Robot Navigation
Authors: S. Veera Ragavan, V. Ganapathy
Abstract:
Many environment specific methods and systems for Robot Navigation exist. However vast strides in the evolution of navigation technologies and system techniques create the need for a general unified framework that is scalable, modular and dynamic. In this paper a Unified Framework for a Robust Conflict-free Robot Navigation System that can be used for either a structured or unstructured and indoor or outdoor environments has been proposed. The fundamental design aspects and implementation issues encountered during the development of the module are discussed. The results of the deployment of three major peripheral modules of the framework namely the GSM based communication module, GIS Module and GPS module are reported in this paper.Keywords: Localization, Sensor Fusion, Mapping, GIS, GPS, and Autonomous Mobile Robot Navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954522 GPS and Discrete Kalman Filter for Indoor Robot Navigation
Authors: Mbaitiga Zacharie
Abstract:
This paper discusses the implementation of the Kalman Filter along with the Global Positioning System (GPS) for indoor robot navigation. Two dimensional coordinates is used for the map building, and refers to the global coordinate which is attached to the reference landmark for position and direction information the robot gets. The Discrete Kalman Filter is used to estimate the robot position, project the estimated current state ahead in time through time update and adjust the projected estimated state by an actual measurement at that time via the measurement update. The navigation test has been performed and has been found to be robust.Keywords: Global positioning System, kalman filter, robot navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047521 Mobile Robot Navigation Using Local Model Networks
Authors: Hamdi. A. Awad, Mohamed A. Al-Zorkany
Abstract:
Developing techniques for mobile robot navigation constitutes one of the major trends in the current research on mobile robotics. This paper develops a local model network (LMN) for mobile robot navigation. The LMN represents the mobile robot by a set of locally valid submodels that are Multi-Layer Perceptrons (MLPs). Training these submodels employs Back Propagation (BP) algorithm. The paper proposes the fuzzy C-means (FCM) in this scheme to divide the input space to sub regions, and then a submodel (MLP) is identified to represent a particular region. The submodels then are combined in a unified structure. In run time phase, Radial Basis Functions (RBFs) are employed as windows for the activated submodels. This proposed structure overcomes the problem of changing operating regions of mobile robots. Read data are used in all experiments. Results for mobile robot navigation using the proposed LMN reflect the soundness of the proposed scheme.Keywords: Mobile Robot Navigation, Neural Networks, Local Model Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019520 Application of Wireless Visual Sensor for Semi- Autonomous Mine Navigation System
Authors: Vinay Kumar Pilania, Debashish Chakravarty
Abstract:
The present paper represent the efforts undertaken for the development of an semi-automatic robot that may be used for various post-disaster rescue operation planning and their subsequent execution using one-way communication of video and data from the robot to the controller and controller to the robot respectively. Wireless communication has been used for the purpose so that the robot may access the unapproachable places easily without any difficulties. It is expected that the information obtained from the robot would be of definite help to the rescue team for better planning and execution of their operations.Keywords: Mine environment, mine navigation, mine rescue robot, video data transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731519 Hybrid Control Mode Based On Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot
Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin
Abstract:
This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.
Keywords: Autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207518 Sensor Fusion Based Discrete Kalman Filter for Outdoor Robot Navigation
Authors: Mbaitiga Zacharie
Abstract:
The objective of the presented work is to implement the Kalman Filter into an application that reduces the influence of the environmental changes over the robot expected to navigate over a terrain of varying friction properties. The Discrete Kalman Filter is used to estimate the robot position, project the estimated current state ahead at time through time update and adjust the projected estimated state by an actual measurement at that time via the measurement update using the data coming from the infrared sensors, ultrasonic sensors and the visual sensor respectively. The navigation test has been performed in a real world environment and has been found to be robust.
Keywords: Kalman filter, sensors fusion, robot navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114517 Robot Navigation and Localization Based on the Rat’s Brain Signals
Authors: Endri Rama, Genci Capi, Shigenori Kawahara
Abstract:
The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.Keywords: Brain machine interface, decision-making, local field potentials, mobile robot, navigation, neural network, rat, signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483516 Dual Mode Navigation for Two-Wheeled Robot
Authors: N.M Abdul Ghani, L.K. Haur, T.P.Yon, F Naim
Abstract:
This project relates to a two-wheeled self balancing robot for transferring loads on different locations along a path. This robot specifically functions as a dual mode navigation to navigate efficiently along a desired path. First, as a plurality of distance sensors mounted at both sides of the body for collecting information on tilt angle of the body and second, as a plurality of speed sensors mounted at the bottom of the body for collecting information of the velocity of the body in relative to the ground. A microcontroller for processing information collected from the sensors and configured to set the path and to balance the body automatically while a processor operatively coupled to the microcontroller and configured to compute change of the tilt and velocity of the body. A direct current motor operatively coupled to the microcontroller for controlling the wheels and characterized in that a remote control is operatively coupled to the microcontroller to operate the robot in dual navigation modes.Keywords: Two-Wheeled Balancing Robot, Dual Mode Navigation, Remote Control, Desired Path.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204515 The Framework of BeeBot: Binus Multi-Client of Intelligent Telepresence Robot
Authors: Widod Budiharto, Muhsin Shodiq, Bayu Kanigoro, Jurike V. Moniaga Hutomo
Abstract:
We present a BeeBot, Binus Multi-client Intelligent Telepresence Robot, a custom-build robot system specifically designed for teleconference with multiple person using omni directional actuator. The robot is controlled using a computer networks, so the manager/supervisor can direct the robot to the intended person to start a discussion/inspection. People tracking and autonomous navigation are intelligent features of this robot. We build a web application for controlling the multi-client telepresence robot and open-source teleconference system used. Experimental result presented and we evaluated its performance.Keywords: Telepresence robot, robot vision, intelligent robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562514 Biologically Inspired Controller for the Autonomous Navigation of a Mobile Robot in an Evasion Task
Authors: Dejanira Araiza-Illan, Tony J. Dodd
Abstract:
A novel biologically inspired controller for the autonomous navigation of a mobile robot in an evasion task is proposed. The controller takes advantage of the environment by calculating a measure of danger and subsequently choosing the parameters of a reinforcement learning based decision process. Two different reinforcement learning algorithms were used: Qlearning and Sarsa (λ). Simulations show that selecting dynamic parameters reduce the time while executing the decision making process, so the robot can obtain a policy to succeed in an escaping task in a realistic time.Keywords: Autonomous navigation, mobile robots, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479513 An Edge-based Text Region Extraction Algorithm for Indoor Mobile Robot Navigation
Authors: Jagath Samarabandu, Xiaoqing Liu
Abstract:
Using bottom-up image processing algorithms to predict human eye fixations and extract the relevant embedded information in images has been widely applied in the design of active machine vision systems. Scene text is an important feature to be extracted, especially in vision-based mobile robot navigation as many potential landmarks such as nameplates and information signs contain text. This paper proposes an edge-based text region extraction algorithm, which is robust with respect to font sizes, styles, color/intensity, orientations, and effects of illumination, reflections, shadows, perspective distortion, and the complexity of image backgrounds. Performance of the proposed algorithm is compared against a number of widely used text localization algorithms and the results show that this method can quickly and effectively localize and extract text regions from real scenes and can be used in mobile robot navigation under an indoor environment to detect text based landmarks.
Keywords: Landmarks, mobile robot navigation, scene text, text localization and extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2923512 Robot Exploration and Navigation in Unseen Environments Using Deep Reinforcement Learning
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environment complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.
Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, Custom Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61511 Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation
Authors: Md. Masum Billah, Mohiuddin Ahmed, Soheli Farhana
Abstract:
In modern day disaster recovery mission has become one of the top priorities in any natural disaster management regime. Smart autonomous robots may play a significant role in such missions, including search for life under earth quake hit rubbles, Tsunami hit islands, de-mining in war affected areas and many other such situations. In this paper current state of many walking robots are compared and advantages of hexapod systems against wheeled robots are described. In our research we have selected a hexapod spider robot; we are developing focusing mainly on efficient navigation method in different terrain using apposite gait of locomotion, which will make it faster and at the same time energy efficient to navigate and negotiate difficult terrain. This paper describes the method of terrain negotiation navigation in a hazardous field.Keywords: Walking robots, locomotion, hexapod robot, gait, hazardous field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4432510 Cascade Kalman Filter Configuration for Low Cost IMU/GPS Integration in Car Navigation Like Robot
Authors: Othman Maklouf, Abdurazag Ghila, Ahmed Abdulla
Abstract:
This paper introduces a low cost INS/GPS algorithm for land vehicle navigation application. The data fusion process is done with an extended Kalman filter in cascade configuration mode. In order to perform numerical simulations, MATLAB software has been developed. Loosely coupled configuration is considered. The results obtained in this work demonstrate that a low-cost INS/GPS navigation system is partially capable of meeting the performance requirements for land vehicle navigation. The relative effectiveness of the kalman filter implementation in integrated GPS/INS navigation algorithm is highlighted. The paper also provides experimental results; field test using a car is carried out.Keywords: GPS, INS, IMU, Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3848509 Kinematics and Control System Design of Manipulators for a Humanoid Robot
Authors: S. Parasuraman
Abstract:
In this work, a new approach is proposed to control the manipulators for Humanoid robot. The kinematics of the manipulators in terms of joint positions, velocity, acceleration and torque of each joint is computed using the Denavit Hardenberg (D-H) notations. These variables are used to design the manipulator control system, which has been proposed in this work. In view of supporting the development of a controller, a simulation of the manipulator is designed for Humanoid robot. This simulation is developed through the use of the Virtual Reality Toolbox and Simulink in Matlab. The Virtual Reality Toolbox in Matlab provides the interfacing and controls to an environment which is developed based on the Virtual Reality Modeling Language (VRML). Chains of bones were used to represent the robot.Keywords: Mobile robot, Robot Kinematics, Robot Navigation, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597508 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser
Authors: Guanqiao Wang, Hongyang Yu
Abstract:
There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. Therefore, robots appear more and more frequently in the construction industry. Navigation and positioning is a very important task for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radio frequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered or the error of plastering the wall is large. A positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.
Keywords: Indoor plastering robot, navigation, precise positioning, line laser, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537507 Virtual 3D Environments for Image-Based Navigation Algorithms
Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka
Abstract:
This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.Keywords: Simulation, visual navigation, mobile robot, data visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048506 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review
Authors: D. Vidhyaprakash, A. Elango
Abstract:
In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.
Keywords: Wheeled mobile robot (WMR), terrain, wheel slippage, odometry error, navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249505 Single-Camera EKF-vSLAM
Authors: ML. Benmessaoud, A. Lamrani, K. Nemra, AK. Souici
Abstract:
This paper presents an Extended Kaman Filter implementation of a single-camera Visual Simultaneous Localization and Mapping algorithm, a novel algorithm for simultaneous localization and mapping problem widely studied in mobile robotics field. The algorithm is vision and odometry-based, The odometry data is incremental, and therefore it will accumulate error over time, since the robot may slip or may be lifted, consequently if the odometry is used alone we can not accurately estimate the robot position, in this paper we show that a combination of odometry and visual landmark via the extended Kalman filter can improve the robot position estimate. We use a Pioneer II robot and motorized pan tilt camera models to implement the algorithm.Keywords: Mobile Robot, Navigation, vSLAM, EKF, monocular.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680504 A Fuzzy Logic Based Navigation of a Mobile Robot
Authors: Anis Fatmi, Amur Al Yahmadi, Lazhar Khriji, Nouri Masmoudi
Abstract:
One of the long standing challenging aspect in mobile robotics is the ability to navigate autonomously, avoiding modeled and unmodeled obstacles especially in crowded and unpredictably changing environment. A successful way of structuring the navigation task in order to deal with the problem is within behavior based navigation approaches. In this study, Issues of individual behavior design and action coordination of the behaviors will be addressed using fuzzy logic. A layered approach is employed in this work in which a supervision layer based on the context makes a decision as to which behavior(s) to process (activate) rather than processing all behavior(s) and then blending the appropriate ones, as a result time and computational resources are saved.
Keywords: Behavior based navigation, context based coordination, fuzzy logic, mobile robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863503 Analytical Approach of the In-Pipe Robot on Branched Pipe Navigation and Its Solution
Authors: Yoon Koo Kang, Jung wan Park, Hyun Seok Yang
Abstract:
This paper determines most common model of in-pipe robots to derive its degree of freedom in order to compare with the necessary degree of freedom required for a system to move inside pipelines freely in order to derive analytical reason for losing control of in-pipe robots at branched pipe. DOF of most common mechanism in in-pipe robots can be calculated by considering the robot as a parallel manipulator. A new design based on previously researched in-pipe robot PAROYS has been suggested, and its possibility to overcome branched section has been simulated.Keywords: Branched pipe, Degree of freedom, In-pipe robot, Parallel manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217502 A Hybrid Distributed Vision System for Robot Localization
Authors: Hsiang-Wen Hsieh, Chin-Chia Wu, Hung-Hsiu Yu, Shu-Fan Liu
Abstract:
Localization is one of the critical issues in the field of robot navigation. With an accurate estimate of the robot pose, robots will be capable of navigating in the environment autonomously and efficiently. In this paper, a hybrid Distributed Vision System (DVS) for robot localization is presented. The presented approach integrates odometry data from robot and images captured from overhead cameras installed in the environment to help reduce possibilities of fail localization due to effects of illumination, encoder accumulated errors, and low quality range data. An odometry-based motion model is applied to predict robot poses, and robot images captured by overhead cameras are then used to update pose estimates with HSV histogram-based measurement model. Experiment results show the presented approach could localize robots in a global world coordinate system with localization errors within 100mm.Keywords: Distributed Vision System, Localization, Measurement model, Motion model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339501 Design and Implementation a Fully Autonomous Soccer Player Robot
Authors: S. H. Mohades Kasaei, S. M. Mohades Kasaei, S. A. Mohades Kasaei, M. Taheri, M. Rahimi, H. Vahiddastgerdi, M. Saeidinezhad
Abstract:
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensive Omni directional mobile robot. Such a robot can respond more quickly and it would be capable for more sophisticated behaviors with multi-sensor data fusion algorithm for global localization base on the data fusion. This paper has tried to focus on the research improvements in the mechanical, electrical and software design of the robots of team ADRO Iran. The main improvements are the world model, the new strategy framework, mechanical structure, Omni-vision sensor for object detection, robot path planning, active ball handling mechanism and the new kicker design, , and other subjects related to mobile robotKeywords: Mobile robot, Machine vision, Omni directional movement, Autonomous Systems, Robot path planning, Object Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151500 The Development of Flying Type Moving Robot Using Image Processing
Authors: Suriyon Tansuriyavong, Yuuta Suzuki, Boonmee Choompol
Abstract:
Wheel-running type moving robot has the restriction on the moving range caused by obstacles or stairs. Solving this weakness, we studied the development of moving robot using airship. Our airship robot moves by recognizing arrow marks on the path. To have the airship robot recognize arrow marks, we used edge-based template matching. To control propeller units, we used PID and PD controller. The results of experiments demonstrated that the airship robot can move along the marks and can go up and down the stairs. It is shown the possibility that airship robot can become a robot which can move at wide range facilities.Keywords: Template matching, moving robot, airship robot, PID control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534499 Simple Agents Benefit Only from Simple Brains
Authors: Valeri A. Makarov, Nazareth P. Castellanos, Manuel G. Velarde
Abstract:
In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.
Keywords: Neural network, probabilistic control, robot navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429498 Mobile Robot Path Planning Utilizing Probability Recursive Function
Authors: Ethar H. Khalil, Bahaa I. Kazem
Abstract:
In this work a software simulation model has been proposed for two driven wheels mobile robot path planning; that can navigate in dynamic environment with static distributed obstacles. The work involves utilizing Bezier curve method in a proposed N order matrix form; for engineering the mobile robot path. The Bezier curve drawbacks in this field have been diagnosed. Two directions: Up and Right function has been proposed; Probability Recursive Function (PRF) to overcome those drawbacks. PRF functionality has been developed through a proposed; obstacle detection function, optimization function which has the capability of prediction the optimum path without comparison between all feasible paths, and N order Bezier curve function that ensures the drawing of the obtained path. The simulation results that have been taken showed; the mobile robot travels successfully from starting point and reaching its goal point. All obstacles that are located in its way have been avoided. This navigation is being done successfully using the proposed PRF techniques.Keywords: Mobile robot, path planning, Bezier curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460497 Comparison of GSA, SA and PSO Based Intelligent Controllers for Path Planning of Mobile Robot in Unknown Environment
Authors: P. K. Panigrahi, Saradindu Ghosh, Dayal R. Parhi
Abstract:
Now-a-days autonomous mobile robots have found applications in diverse fields. An autonomous robot system must be able to behave in an intelligent manner to deal with complex and changing environment. This work proposes the performance of path planning and navigation of autonomous mobile robot using Gravitational Search Algorithm (GSA), Simulated Annealing (SA) and Particle Swarm optimization (PSO) based intelligent controllers in an unstructured environment. The approach not only finds a valid collision free path but also optimal one. The main aim of the work is to minimize the length of the path and duration of travel from a starting point to a target while moving in an unknown environment with obstacles without collision. Finally, a comparison is made between the three controllers, it is found that the path length and time duration made by the robot using GSA is better than SA and PSO based controllers for the same work.
Keywords: Autonomous Mobile Robot, Gravitational Search Algorithm, Particle Swarm Optimization, Simulated Annealing Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3117496 Development of a Portable Welding Robot with EtherCAT Interface
Authors: Juyi Park, Sang-Bum Lee, Jin-Wook Kim, Ji-Yoon Kim, Jung-Min Kim, Hee-Hwan Park, Jae-Won Seo, Gye-Hyung Kang, Soo-Ho Kim
Abstract:
This paper presents a portable robot that is to use for welding process in shipbuilding yard. It has six degree of freedom and 3kg payload capability. Its weight is 21.5kg so that human workers can carry it to the work place. Its body mainly made of magnesium alloy and aluminum alloy for few parts that require high strength. Since the distance between robot and controller should be 50m at most, the robot controller controls the robot through EtherCAT. RTX and KPA are used for real time EtherCAT control on Windows XP. The performance of the developed robot was satisfactory, in welding of U type cell in shipbuilding yard.Keywords: Portable welding robot, Shipbuilding, EtherCAT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962495 Robot Cell Planning
Authors: Allan Tubaileh, Ibrahim Hammad, Loay Al Kafafi
Abstract:
A new approach to determine the machine layout in flexible manufacturing cell, and to find the feasible robot configuration of the robot to achieve minimum cycle time is presented in this paper. The location of the input/output location and the optimal robot configuration is obtained for all sequences of work tasks of the robot within a specified period of time. A more realistic approach has been presented to model the problem using the robot joint space. The problem is formulated as a nonlinear optimization problem and solved using Sequential Quadratic Programming algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043