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Abstract—This paper introduces a low cost INS/GPS algorithm for
land vehicle navigation application. The data fusion process is done
with an extended Kalman filter in cascade configuration mode. In
order to perform numerical simulations, MATLAB software has been
developed. Loosely coupled configuration is considered. The results
obtained in this work demonstrate that a low-cost INS/GPS navigation
system is partially capable of meeting the performance requirements
for land vehicle navigation. The relative effectiveness of the kalman
filter implementation in integrated GPS/INS navigation algorithm is
highlighted. The paper also provides experimental results; field test
using a car is carried out.
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I. INTRODUCTION

NAVIGATION comprises the methods and technologies
to determine the time varying position and attitude of

a moving object by measurement. Position, velocity, and
attitude, when presented as time variable functions are called
navigation states because they contain all necessary navigation
information to geo-reference the moving object at that moment
of time [1]. A navigation sensor measures quantity related to
one or more elements of the navigation state such as Global
Positioning System (GPS). A Combination of sensors capable
of determining all navigation states makes up a navigation
system such as Inertial Navigation System (INS). Inertial
navigation is the determination of the position of a vehicle
through the implementation of inertial sensors. It is based on
the principle that an object will remain in uniform motion
unless disturbed by an external force. This force in turn
generates acceleration on the object. If this acceleration can be
measured and then mathematically integrated, then the change
in velocity and position of the object with respect to an initial
condition can be determined.

Rotational motion of the body with respect to the inertial
reference frame may be sensed using gyroscopic sensors and
used to determine the orientation of the accelerometers at all
times. Given this information, it is possible to transform the
accelerations into the computation frame before the integra-
tion process takes place. At each time-step of the system’s
clock, the navigation computer time integrates this quantity
to get the body’s velocity vector. The velocity vector is then
time integrated, yielding the position vector. Hence, inertial
navigation is the process whereby the measurements provided
by gyroscopes and accelerometers are used to determine
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the position of the vehicle in which they are installed. By
combining the two sets of measurements, it is possible to
define the translational motion of the vehicle within the inertial
reference frame and to calculate its position within that frame.

II. INERTIAL NAVIGATION SYSTEM

The basic principle of an INS is based on the integration
of accelerations observed by the accelerometers on board
the moving platform. The system accomplishes this task
through appropriate processing of the data obtained from the
specific force and angular velocity measurements. Thus, an
appropriately initialized inertial navigation system is capable
of continuous determination of vehicle position, velocity and
attitude without the use of the external information [1].

A major advantage of using inertial units is that given the
acceleration and angular rotation rate data in three dimensions,
the velocity and position of the vehicle can be evaluated in
any navigation frame. For land vehicles, a further advantage
is that unlike wheel encoders, an inertial unit is not affected by
wheel slip. However, the errors caused by bias, scale factors
and non-linearity in the sensor readings cause an accumulation
in navigation errors with time and furthermore inaccurate
readings are caused by the misalignment of the unit’s axes
with respect to the local navigation frame. This misalignment
blurs the distinction between the acceleration measured by the
vehicles motion and that due to gravity, thus causing inaccurate
velocity and position evaluation. Since an inertial unit is a dead
reckoning sensor, any error in a previous evaluation will be
carried onto the next evaluation, thus as time progresses the
navigation solution drifts [2].

A. Physical implementation

The first type of INS developed was a gimbaled system
the accelerometers are mounted on a gimbaled. In a gimbaled
system the accelerometer triad is rigidly mounted on the inner
gimbal of three gyros, Figure 1(b). The inner gimbal is isolated
from the vehicle rotations and its attitude remains constant in
a desired orientation in space during the motion of the system.
The gyroscopes on the stable platform are used to sense any
rotation of the platform, and their outputs are used in servo
feedback loops with gimbal pivot torque actuators to control
the gimbals such that the platform remains stable. These
systems are very accurate, because the sensors can be designed
for very precise measurements in a small measurement range.
In contrary, a strap-down inertial navigation system uses
orthogonal accelerometers and gyro triads rigidly fixed to
the axes of the moving vehicle , Figure 1(a). The angular
motion of the system is continuously measured using the rate
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Fig. 1. Inertial Systems Arrangement.

sensors. The accelerometers do not remain stable in space,
but follow the motion of the vehicle. A strap-down system is
a major hardware simplification of the old gimbaled systems.
The accelerometers and gyros are mounted in body coordinates
and are not mechanically moved. Instead, a software solution
is used to keep track of the orientation of the IMU (and
vehicle) and rotate the measurements from the body frame to
the navigational frame. This method overcomes the problems
encountered with the gimbaled system, and most importantly
reduces the size, cost, power consumption, and complexity of
the system.

B. Error sources

This section will provide a quick overview of some diffi-
culties present in inertial navigation. This will provide a better
understanding for the difficulties encountered with the IMU.

1) Bias: A sensor bias is always defined by two com-
ponents: A deterministic component called bias offset which
refers to the offset of the measurement provided by the sensor
from the true input; and a stochastic component called bias
drift which refers to the rate at which the error in an inertial
sensor accumulates with time. The bias offset is deterministic
and can be quantified by calibration while the bias drift is
random in nature and should be treated as a stochastic process.

2) The scale factor: The scale factor is the relationship
between the output signal and the true physical quantity being
measured and it is usually expressed in parts per million
(ppm). The scale factor is deterministic in nature and can be
quantified or determined through lab calibration. The variation
of the scale factor with the variation of the exerted acceler-
ation/angular rate or temperature represents the scale factor
stability and is usually called the non-linear part of the scale
factor error.

3) Output stability: The output stability of a sensor defines
the run-to-run or switch-on-to-switch-on variation of the gyro-
drift/accelerometer-bias as well as in-run variation of gyro-
drift/accelerometer-bias. The run-to-run stability can be eval-
uated from the scatter in the mean output for each run for
a number of runs given that the sensor is turned off then on
again between each two successive runs. The in-run stability of
a sensor is deduced from the average scatter of the measured
drift in the output about the mean value during a single run.

Fig. 2. GPS Satellite Constellation.

4) Thermal sensitivity: Thermal sensitivity refers to the
range of variation of the sensor performance characteristics,
particularly bias and scale factor errors, with a change in tem-
perature. A bias or scale factor correlation with temperature
variation can be defined graphically or numerically (using
a mathematical expression) through intensive lab thermal
testing. Such correlations can be stored on a computer for
online use to provide compensation for temperature variation,
provided a thermal sensor is supplied with the sensor.

III. GLOBAL POSITIONING SYSTEM

The Global Positioning System is a satellite-based naviga-
tion system that was developed by the U.S. Department of
Defense in the early 1970s. Initially developed as a military
system, it was later made available to civilians, and is now
a dual-use system that can be accessed by both military and
civilian users. The GPS consists basically of three segments:
the space segment, the control segment, and the user segment.
The space segment consists of 24 satellites arranged in 6
orbital planes with an inclination angle of 55o relative to the
Earth equator, as shown in Figure 2. The satellites have ap-
proximately an average orbit radius of 20200 km and complete
one orbit in 11 hours and 58 minutes. The control segment
monitors the health of the orbiting satellites and uploads
navigation data. It consists of a system of tracking stations
located around the world, including six monitor stations,
four ground antennas, and a master control station. The user
segment consists of receivers specifically designed to receive,
decode, and process the GPS satellite signals.

Under good conditions GPS will be able to provide con-
tinuous and accurate positioning to the user at all time. But
unfortunately good conditions will not always occur as the
signal from the satellites can be blocked by (e.g. Mountains
and high buildings). Further as the electromagnetic signal
travels from the satellites to the Earth it can be influenced by
magnetic fields, areas with high amount of free electrons and
moisture air that cause the signal to travel slower than expected
(speed of light in vacuum). At the Earth the signal can be
extended by reflections from e.g. (glass), the clocks onboard
the satellites and in the receivers can be unsynchronized
and therefore cause more errors on the signal. Hence any
sophisticated urban navigation system cannot depend on GPS
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Fig. 3. General Coordinates for a car-like robot.

as a stand-alone system. Instead one can integrate two (or
more) different navigation systems.

IV. MODELING OF CAR LIKE ROBOT

This section discusses the mathematical model used for the
vehicle. Development of a rigorous model for a land vehicle
velocity requires information about the steering angle, front
and rear slip angle, tire pressure, angular speed of the wheels,
suspension system, etc. Since it is very difficult to acquire such
information, So that using some of these parameters based
on the two-dimensional ”fundamental bicycle” which assumes
that the vehicle consists of front and rear virtual wheels is more
reliable [3].

A. System Modeling

The first step of the derivation is to create the kinematic
model by employing the nonholonomic constraints. These
constraints hold under the assumption that there is no slippage
at the wheel. A nonholonomic constraint is one that is not
integrable. The constraints related to an automobile are those
of the vehicle’s velocity. As a result, the general form of the
nonholonomic constraint is

u̇ sin θ − ẇ cos θ = 0 (1)

Where u̇ and ẇ are the velocities of a wheel within a given
(u,w) coordinate system, and θ is the angle of the wheel with
respect to the x-axis. For small angles of steering, the car
can be modeled as a bicycle, as shown in Figure 3. Denote
(x, y) as being the position of the center of gravity, θ as the
orientation of the vehicle with respect to the x-axis, and φ as
the steering angle between the front wheel and the body axis.

ẋ = vu cos θ − vw sin θ (2)

ẏ = vu sin θ − vw cos θ (3)

where vu and vw are the velocities of the center of gravity
along the u and w axes respectively. The dynamic equations
can be derived with a couple added assumptions. These added
assumptions are that there is no friction force between the
wheels and the vehicle, and that the rear wheels are locked to
be in the same orientation as the vehicle. Other assumptions
that there is no slip at the wheel, and that the driving force,
based on the radius of the wheel and the drive torque, can be

Fig. 4. 2D vector representation.

modeled as acting at the center of the rear wheels. With the
slippage assumption comes a pair of forces, one acting at each
wheel, and perpendicular to that wheel. The forces involved
in this derivation are shown in Figure 3 [3].

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

θ̇

v̇u
˙vw
φ̇

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
cos θ − ḃ

l
tanφ sin θ

)
vu(

sin θ + ḃ
l
tanφ cos θ

)
vu

tanφ
l

vu
vu(b

2+j) tanφ

γ
φ̇+ l2(cosφ)2

γ
FD

θ̈ b
1
τs
φ+ Cs u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

Where FD is the driving force, applied at the rear axle, along
the u-axis, and FF and FR are the resultant lateral forces on
the front and rear tires respectively, Rw is the radius of the
wheel and Nw and Nm are the number of teeth on the gears
connecting the axle and motor respectively, and u1 and u2 are
the input voltages [3].

B. 2D simulation of Strapdown Inertial Navigation

For a vehicle moving in 2D space, it is necessary to
monitor both the translational motion in two directions and the
change in the direction of vehicle (i.e. rotational motion). Two
accelerometers are required to detect the acceleration in two
directions. One gyroscope is required to detect the direction
of the vehicle (rotational motion) in a direction perpendicular
to the plane of motion. Strapdown systems mathematically
transform the output of the accelerometers attached to the
body into the navigation coordinate system before performing
the mathematical integration. These systems use the output
of the gyroscope attached to the body to continuously update
the transformation necessary to convert from body coordinate
to navigation. The derivation of the transformation matrix is
explained below [4].

As seen from the above figure the two accelerometers are
fixed in X and Y directions, these directions represent the
body coordinates. The measured acceleration will transform
to the navigation frame (East and North) using the following
transformation matrix.(

aE
aN

)
=

(
cosA − sinA
sinA cosA

)(
ax
ay

)
(5)
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Fig. 5. INS mechanization equations in 2D.

an = Rn
b ab (6)

Where aE and aN are the accelerations in the (East and
North directions) navigation frame, A is azimuth angle, an is
the acceleration in the navigation frame, ab is the acceleration
in the body frame defined by the accelerometers, and Rn

b is
the rotation matrix which rotates ab to the navigation frame.

C. INS mechanization equations in 2D

INS mechanization is the process of determining the nav-
igation states (position, velocity and attitude) from the raw
inertial measurements through solving the differential equa-
tions describing the system motion. Mechanization is usually
expressed by a set of differential equations and typically
performed in the local level frame defined by the local east,
north and ellipsoid normal. The IMU measurements include
one angular rate components provided by the gyroscope and
denoted by θ̇ as well as two linear acceleration components
provided by the accelerometers and denoted by the 2×1 vector
v̇b. This means that the angular velocity θ̇ of the body frame is
measured with respect to the inertial frame. Considering the
block diagram shown in Figure 5, the differential equations
describing the INS mechanization equation can be derived
as follows; Firstly, the output of the two accelerometers v̇b
is transformed from the body frame to the navigation frame
(local level frame) using the transformation matrix Rl

b as given
in the following equation

v̇l = Rl
b v̇

b (7)

where

Rl
b =

(
cosA − sinA
sinA cosA

)
(8)

After the transformation of the acceleration components from
the body frame to the navigation frame, the velocity compo-
nents can be derived by integrating the given acceleration in
the navigation frame. Consequently the corresponding position
can be obtained by double integrating the acceleration in
the navigation frame. Also the velocity component of the
navigation frame can be directly calculated using the trans-
formation of the velocity component in the body frame using
the transformation matrix Rl

b

vl = Rl
b v

b (9)

The acceleration components in the navigation frame can be
expressed as(

aE
aN

)
=

(
cos θ − sin θ
sin θ cos θ

)(
v̇x
v̇y

)
−

(
0 θ

−θ 0

)(
cos θ − sin θ
sin θ cos θ

)(
vx
vy

)
(10)

Fig. 6. Simulating strapdown INS mechanization.

D. Simulation and testing of INS for navigation of a car like
robot

To understand the mechanization of the strapdown INS in
(2-D model), an INS algorithm is carried out under MAT-
LAB/SIMULINK environment. In this computational algo-
rithm the raw measurement data from the IMU is transformed
from the body frame to the navigation frame via a transfor-
mation matrix designed for this purpose, this transformation
matrix is simply a direction cosine matrix given in Eq.( 8),
after this transformation is done a double integration are
performed to calculate the position, velocity, and attitude in
navigation frame.

E. Simulation Results

To understand the mechanization of the strapdown INS in
(2-D model), an INS algorithm is carried out under MAT-
LAB/SIMULINK environment. In this computational algo-
rithm the raw measurement data from the IMU is transformed
from the body frame to the navigation frame via a transfor-
mation matrix designed for this purpose, this transformation
matrix is simply a direction cosine matrix given in Eq.( 8),
after this transformation is done a double integration are
performed to calculate the position, velocity, and attitude in
navigation frame.

The results of testing of strapdown INS in navigation of
car like robot is shown in Figure 7. It is obvious from the
figure that the calculated trajectory using INS algorithm is
trying to track the real trajectory of the car, but due to the
noisy measurement of the IMU sensors (accelerometers and
gyros) this noisy measurements when integrated resulted in
high drift in INS trajectory since double integration is needed
for position calculation

V. KALMAN FILTER THEORY AND ALGORITHM

An extended kalman filter was developed to estimate the
position, velocity and attitude of the system. The full kalman
filter equations will not be presented here due to limited
space, but an overview of the process is shown below and
further information can be found in [5]. The Kalman filter
estimates a process by using a form of feedback control: the
filter estimates the process state at some time and then obtains
feedback in the form of (noisy) measurements. As such, the
equations for the Kalman filter fall into two groups: time
update equations and measurement update equations. The time
update equations are responsible for projecting forward (in
time) the current state and error covariance estimates to obtain
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Fig. 7. INS trajectory Vs Car Trajectory.

the a priori estimates for the next time step. The measurement
update equations are responsible for the feedback, i.e. for
incorporating a new measurement into the a priori estimate
to obtain an improved a posteriori estimate. The time update
equations can also be thought of as predictor equations,
while the measurement update equations can be thought of
as corrector equations. Indeed the final estimation algorithm
resembles that of a predictor-corrector algorithm for solving
numerical problems.

The specific equations for the time updates are presented
below in

x̂k̄ = Ax̂k−1 +Buk (11)

Pk̄ = APk−1A
T +Q (12)

Notice how the time update equations project the state and
covariance estimates forward from time step K−1 to step K .
The specific equations for measurement updates are presented
as

Kk = P−HT
(
HP−HT +R

)
−1

(13)

x̂k = x̂−

k +Kk (Zk −Hx̂k) (14)

Pk = (I −KkH)P−

k (15)

The first task during the measurement update is to compute
the Kalman gain K . The next step is to actually measure the
process to obtain Zk, and then to generate an a posteriori state
estimate by incorporating the measurement. The final step is
to obtain an a posteriori error covariance estimate via Eq.( 15).
After each time and measurement update pair, the process
is repeated with the previous a posteriori estimates used to
project or predict the new a priori estimates. This recursive
nature is one of the very appealing features of the Kalman
filter it makes practical implementations much more feasible.
The Kalman filter instead recursively conditions the current
estimate on all of the past measurements.

VI. HARDWARE

This section is devoted to provide an overview of the two
primaries utilized inertial sensors. The CRISTA IMU and
GARMINE GPS specifications are briefly introduced.

Fig. 8. The cloud cup technology Crista IMU which is a very small, low-
cost, 3-axis MEMS inertial measurement unit (left). GPS 18 PC with DB-9
pin serial connector (right).

A. Crista IMU

The Crista Inertial Measurement Unit shown in Figure 8
is a very small three axis inertial sensor that provides high
resolution digital rate and acceleration data via serial interfaces
from Cloud Cap Technology, [6]. It uses MEMS gyroscopic
rate sensors and accelerometers mounted on orthogonal axes
to provide 300o/sec rate and 10G acceleration data. It has an
in-built GPS pulse per second (PPS) interface which facilitates
accurate time synchronization of IMU and GPS data. The
Crista IMU does not provide a calculated attitude solution,
but rather provides temperature compensated raw rate and
acceleration data for the host algorithms. The user controls
data update rate and over-sample averaging of output data..
The IMU is small in size (2.05”× 1.50” × 1.00”) and weighs
only 36.8 grams. A GPS Pulse Per Second input signal
interface allows time correlation of IMU and GPS data.

B. Garmin GPS

The GPS system used in this work is the Garmin 18 PC.
It is a low-cost off-the-shelf (Figure 8), outputs the NMEA
0183 (V2.2) protocol (commands: GGA, GSA, GSV, RMC,
GLL, VTG) on a RS232 serial interface. The interface speed
is 9600 baud and the used datum for the position calculation
is WGS84. The receiver is powered over an additional power
cable with 5V D.C [7]. The received GPS messages first need
to be parsed to extract the desired information. The latitude,
longitude, and height above mean sea level are extracted from
the GGA message, the PDOP and working mode from the
GSA message, and the speed over ground from the RMC
message. The latitude, longitude, and height together are
converted into rectangular coordinates (x, y, z) and the speed
needs to be converted from knots to meters per second.

VII. SYSTEM ARCHITECTURE

In this section the integration of the GPS and INS using
cascade kalman filter in car navigation like robot will be
investigated. This will discuss the two dimensional model
in which two accelerometers and one rate gyro of the IMU
are needed in order to monitor the motion of the vehi-
cle. Simulation for testing of strapdown GPS/INS algorithms
based on car modeling like robot is considered here using
SIMULINK under MATLAB. Simplified block diagram for
this configuration is shown in Figure 9.
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Fig. 9. Cascade kalman filter configuration in GPS/INS integration for car
like robot navigation.

A. INS Error Modeling Using Cascade Kalman Filter

The error dynamics equations are obtained by perturbing the
kinematic equations. These error equations will be necessary
to build the INS/GPS Kalman filters. In cascade kalman filter
we use two kalman filters, the first one for estimating the
error in position, velocity and the bias associated with each
accelerometer, the second one will estimate the error in the
heading angle and the drift which associated with the rate
gyro. The error model for the first kalman filter can be derived
as follow:

ẋ = Fx +Gw (16)

xT =
[
δx δy δvx δvy bx by

]
(17)⎡

⎢⎢⎢⎢⎢⎢⎣

δẋ
δẏ
δv̇x
δv̇y
bẋ
bẏ

⎤
⎥⎥⎥⎥⎥⎥⎦
= [A1]

⎡
⎢⎢⎢⎢⎢⎢⎣

δx
δy
δvx
δvy
bx
by

⎤
⎥⎥⎥⎥⎥⎥⎦
+ [G]W (18)

where

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 Rn

b11 Rn
b12

0 0 0 0 0 0 Rn
b21 Rn

b22

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

The measurement (update) equation is obtained by comparing
the output of the aiding source PV GPS (GPS position and
velocity measurements) to the INS output PV INS (INS posi-
tion and velocity measurements). The observation Z supplied
to the Kalman filter is therefore expressed as follows:

Z1 = PVGPS − PVINS (20)

Therefore, the observation Z is related to the error state vector
x as follows:

z = Hx+ n (21)

Z1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

δx
δy
δvx
δvy
bx
by

⎤
⎥⎥⎥⎥⎥⎥⎦
+ n (22)
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Fig. 10. The effects of cascade kalman filter in estimation of car trajectory.

While the error model for the second kalman filter can be
given as [

δϕ̇
δω̇

]
= [A2]

[
δϕ
δω

]
+ [G]W (23)

Where

A2 =

[
0 1
0 0

]
(24)

The measurement (update) equation is obtained by comparing
the output velocity of the aiding source VGPS (GPS velocity
measurements) to the INS ϕ (INS heading measurement).
The observation Z supplied to the Kalman filter is therefore
expressed as follows:

Z2 = ϕGPS − ϕINS (25)

Therefore, the observation Z is related to the error state vector
x as follows:

z = Hx+ n (26)

Z2 =
[
1 0

] [ δϕ
δω

]
+ n (27)

B. Simulation Results

The results of simulating the error model developed for a
cascade kalman filter in GPS/INS in car like robot navigation
is shown in the following figures. It is clear that from Fig-
ure 10 the estimated trajectory using GPS/INS integration is
more effective for tracking the real trajectory of the vehicle
compared to the INS stand alone trajectory. Figure 11 shows
the estimated bias and drift using cascade kalman filter.

VIII. EXPERIMENTAL WORK

The experiments are conducted using a car with the IMU
and GPS mount on it. A PC 104 single board computer is
connected to both sensors and the data are recorded. The
main used hard ware is shown in Figure 12. The data was
then taken and analyzed in MATLAB using the proceeding
equations. The experimental work is divided into three main
parts. The first part is the navigation solution which utilizes the
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Fig. 11. Cascade kalman filter estimated bias and drift.

Fig. 12. Hardware used in the experimental work.

INS stand alone without inclusion of the Kalman filter or the
GPS positional corrections. The second part is the navigation
solution using GPS only. The third part will include both the
GPS and INS using Kalman filter. This will clearly shows the
benefits of integrating the INS and GPS, also the limitation of
the IMU can be seen.

A. Stand Alone INS navigation

The recorded data from the crista IMU is consists of the
readings from the three accelerometers and the three rate
gyros, these readings are shown in Figure 13. Closly looking
in the IMU output data reveals that, these data are highly
corrupted with noise which is the main feathres of MEMES
IMU. The IMU recorded data then processed through INS

Fig. 13. Outputs of IMU.

Fig. 14. The INS estimated trajectory of the car without kalman filter and
GPS integrated to it.

navigation algorithm, and the resultant estimated car trajectory
is shown in Figure 14.

B. Navigation using GPS 18 PC

Data recorded from GPS sensor 18 PC includes the compo-
nents of the car position in x and y coordinates the velocities
along the navigation axis Veast and Vnorth. Also the altitude
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Fig. 15. GPS Sensor 18 PC Output.
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Fig. 16. Car trajectory estimated by GPS.

on the ground is recorded. These data are shown in Figure 15.
The resultant car trajectory as presented by the GPS is shown
in Figure 16.

C. GPS/INS integration using cascade kalman filter results

In this section the benfits of integrating the GPS and INS
using cascade kalman filter is shown in Figure 17(a). The GPS
and GPS/INS lie right on top of each other. Taking a closer
look at this plot, Figure 17(b) show that the two do not really
lie exactly on top, but rather the GPS/INS transitions smoothly
through the GPS points.

IX. CONCLUSION

This paper presents a cascaded Kalman filter configuration
consists of two Kalman filters, this configuration is imple-
mented for the purpose of increasing the accuracy of Low Cost
MEMES IMU/GPS integration. This type of configuration
enable us to estimate the error in heading of land vehicle using
in motion alignment by comparing the measured heading of
the GPS and the heading measured by the INS. Simulation
and experimental results using this type of configuration has
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Fig. 17. Advantages of integrating GPS/INS in car trajectory estimation.

shown the advantages of integrating of two different sensors
(GPS and Low Cost IMU) each with their own advantages and
drawbacks. The low cost IMU used in this work is not capable
of running by itself and providing any reasonable positioning
information. GPS provides good results, but is only capable of
determining position every second. The two sensors combined
have the capability of producing good estimates of position in
between the one second updates.
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