Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 684

Search results for: robot vision

684 Vision Based Robot Experiment: Measurement of Path Related Characteristics

Authors: M. H. Korayem, K. Khoshhal, H. Aliakbarpour

Abstract:

In this paper, a vision based system has been used for controlling an industrial 3P Cartesian robot. The vision system will recognize the target and control the robot by obtaining images from environment and processing them. At the first stage, images from environment are changed to a grayscale mode then it can diverse and identify objects and noises by using a threshold objects which are stored in different frames and then the main object will be recognized. This will control the robot to achieve the target. A vision system can be an appropriate tool for measuring errors of a robot in a situation where the experimental test is conducted for a 3P robot. Finally, the international standard ANSI/RIA R15.05-2 is used for evaluating the path-related characteristics of the robot. To evaluate the performance of the proposed method experimental test is carried out.

Keywords: Robot, Vision, Experiment, Standard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
683 An Approach for Integration of Industrial Robot with Vision System and Simulation Software

Authors: Ahmed Sh. Khusheef, Ganesh Kothapalli, Majid Tolouei-Rad

Abstract:

Utilization of various sensors has made it possible to extend capabilities of industrial robots. Among these are vision sensors that are used for providing visual information to assist robot controllers. This paper presents a method of integrating a vision system and a simulation program with an industrial robot. The vision system is employed to detect a target object and compute its location in the robot environment. Then, the target object-s information is sent to the robot controller via parallel communication port. The robot controller uses the extracted object information and the simulation program to control the robot arm for approaching, grasping and relocating the object. This paper presents technical details of system components and describes the methodology used for this integration. It also provides a case study to prove the validity of the methodology developed.

Keywords: industrial robot, integration, simulation, vision system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
682 A Study on the Location and Range of Obstacle Region in Robot's Point Placement Task based on the Vision Control Algorithm

Authors: Jae Kyung Son, Wan Shik Jang, Sung hyun Shim, Yoon Gyung Sung

Abstract:

This paper is concerned with the application of the vision control algorithm for robot's point placement task in discontinuous trajectory caused by obstacle. The presented vision control algorithm consists of four models, which are the robot kinematic model, vision system model, parameters estimation model, and robot joint angle estimation model.When the robot moves toward a target along discontinuous trajectory, several types of obstacles appear in two obstacle regions. Then, this study is to investigate how these changes will affect the presented vision control algorithm.Thus, the practicality of the vision control algorithm is demonstrated experimentally by performing the robot's point placement task in discontinuous trajectory by obstacle.

Keywords: Vision control algorithm, location of obstacle region, range of obstacle region, point placement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
681 Dead-Reckoning Error Calibration using Celling Looking Vision Camera

Authors: Jae-Young Choi, Sung-Gaun Kim

Abstract:

This paper suggests a calibration method to reduce errors occurring due to mobile robot sliding during location estimation using the Dead-reckoning. Due to sliding of the mobile robot caused between its wheels and the road surface while on free run, location estimation can be erroneous. Sliding especially occurs during cornering of mobile robot. Therefore, in order to reduce these frequent sliding errors in cornering, we calibrated the mobile robot-s heading values using a vision camera and templates of the ceiling.

Keywords: Dead-reckoning, Localization, Odomerty, Vision Camera

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
680 A 2D-3D Hybrid Vision System for Robotic Manipulation of Randomly Oriented Objects

Authors: Moulay A. Akhloufi

Abstract:

This paper presents an new vision technique for robotic manipulation of randomly oriented objects in industrial applications. The proposed approach uses 2D and 3D vision for efficiently extracting the 3D pose of an object in the presence of multiple randomly positioned objects. 2D vision permits to quickly select the objects of interest for 3D processing with a new modified ICP algorithm (FaR-ICP), thus reducing significantly the processing time. The extracted 3D pose is then sent to the robot manipulator for picking. The tests show that the proposed system achieves high performances

Keywords: 3D vision, Hand-Eye calibration, robot visual servoing, random bin picking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
679 Localization by DKF Multi Sensor Fusion in the Uncertain Environments for Mobile Robot

Authors: Omid Sojodishijani, Saeed Ebrahimijam, Vahid Rostami

Abstract:

This paper presents an optimized algorithm for robot localization which increases the correctness and accuracy of the estimating position of mobile robot to more than 150% of the past methods [1] in the uncertain and noisy environment. In this method the odometry and vision sensors are combined by an adapted well-known discrete kalman filter [2]. This technique also decreased the computation process of the algorithm by DKF simple implementation. The experimental trial of the algorithm is performed on the robocup middle size soccer robot; the system can be used in more general environments.

Keywords: Discrete Kalman filter, odometry sensor, omnidirectional vision sensor, Robot Localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1187
678 A Hybrid Distributed Vision System for Robot Localization

Authors: Hsiang-Wen Hsieh, Chin-Chia Wu, Hung-Hsiu Yu, Shu-Fan Liu

Abstract:

Localization is one of the critical issues in the field of robot navigation. With an accurate estimate of the robot pose, robots will be capable of navigating in the environment autonomously and efficiently. In this paper, a hybrid Distributed Vision System (DVS) for robot localization is presented. The presented approach integrates odometry data from robot and images captured from overhead cameras installed in the environment to help reduce possibilities of fail localization due to effects of illumination, encoder accumulated errors, and low quality range data. An odometry-based motion model is applied to predict robot poses, and robot images captured by overhead cameras are then used to update pose estimates with HSV histogram-based measurement model. Experiment results show the presented approach could localize robots in a global world coordinate system with localization errors within 100mm.

Keywords: Distributed Vision System, Localization, Measurement model, Motion model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1113
677 The Framework of BeeBot: Binus Multi-Client of Intelligent Telepresence Robot

Authors: Widod Budiharto, Muhsin Shodiq, Bayu Kanigoro, Jurike V. Moniaga Hutomo

Abstract:

We present a BeeBot, Binus Multi-client Intelligent Telepresence Robot, a custom-build robot system specifically designed for teleconference with multiple person using omni directional actuator. The robot is controlled using a computer networks, so the manager/supervisor can direct the robot to the intended person to start a discussion/inspection. People tracking and autonomous navigation are intelligent features of this robot. We build a web application for controlling the multi-client telepresence robot and open-source teleconference system used. Experimental result presented and we evaluated its performance.

Keywords: Telepresence robot, robot vision, intelligent robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
676 Design and Implementation a Fully Autonomous Soccer Player Robot

Authors: S. H. Mohades Kasaei, S. M. Mohades Kasaei, S. A. Mohades Kasaei, M. Taheri, M. Rahimi, H. Vahiddastgerdi, M. Saeidinezhad

Abstract:

Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensive Omni directional mobile robot. Such a robot can respond more quickly and it would be capable for more sophisticated behaviors with multi-sensor data fusion algorithm for global localization base on the data fusion. This paper has tried to focus on the research improvements in the mechanical, electrical and software design of the robots of team ADRO Iran. The main improvements are the world model, the new strategy framework, mechanical structure, Omni-vision sensor for object detection, robot path planning, active ball handling mechanism and the new kicker design, , and other subjects related to mobile robot

Keywords: Mobile robot, Machine vision, Omni directional movement, Autonomous Systems, Robot path planning, Object Localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
675 Robot Vision Application based on Complex 3D Pose Computation

Authors: F. Rotaru, S. Bejinariu, C. D. Niţâ, R. Luca, I. Pâvâloi, C. Lazâr

Abstract:

The paper presents a technique suitable in robot vision applications where it is not possible to establish the object position from one view. Usually, one view pose calculation methods are based on the correspondence of image features established at a training step and exactly the same image features extracted at the execution step, for a different object pose. When such a correspondence is not feasible because of the lack of specific features a new method is proposed. In the first step the method computes from two views the 3D pose of feature points. Subsequently, using a registration algorithm, the set of 3D feature points extracted at the execution phase is aligned with the set of 3D feature points extracted at the training phase. The result is a Euclidean transform which have to be used by robot head for reorientation at execution step.

Keywords: features correspondence, registration algorithm, robot vision, triangulation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
674 An Example of Open Robot Controller Architecture - For Power Distribution Line Maintenance Robot System -

Authors: Yingxin He, Kyouichi Tatsuno

Abstract:

In this paper, we propose an architecture for easily constructing a robot controller. The architecture is a multi-agent system which has eight agents: the Man-machine interface, Task planner, Task teaching editor, Motion planner, Arm controller, Vehicle controller, Vision system and CG display. The controller has three databases: the Task knowledge database, the Robot database and the Environment database. Based on this controller architecture, we are constructing an experimental power distribution line maintenance robot system and are doing the experiment for the maintenance tasks, for example, “Bolt insertion task".

Keywords: Robot controller, Software library, Maintenance robot, Robot language, Agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
673 Intelligent Vision System for Human-Robot Interface

Authors: Al-Amin Bhuiyan, Chang Hong Liu

Abstract:

This paper addresses the development of an intelligent vision system for human-robot interaction. The two novel contributions of this paper are 1) Detection of human faces and 2) Localizing the eye. The method is based on visual attributes of human skin colors and geometrical analysis of face skeleton. This paper introduces a spatial domain filtering method named ?Fuzzily skewed filter' which incorporates Fuzzy rules for deciding the gray level of pixels in the image in their neighborhoods and takes advantages of both the median and averaging filters. The effectiveness of the method has been justified over implementing the eye tracking commands to an entertainment robot, named ''AIBO''.

Keywords: Fuzzily skewed filter, human-robot interface, rmscontrast, skin color segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227
672 Development of Orbital TIG Welding Robot System for the Pipe

Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim

Abstract:

This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).

Keywords: Adaptive welding, automatic welding, Pipe welding, Orbital welding, Laser vision sensor, LVS, welding D/B.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3576
671 Underneath Vehicle Inspection Using Fuzzy Logic, Subsumption and OpenCV Library

Authors: Hazim Abdulsada

Abstract:

The inspection of underneath vehicle system has been given significant attention by governments after the threat of terrorism become more prevalent. New technologies such as mobile robots and computer vision are led to have more secure environment. This paper proposed that a mobile robot like Aria robot can be used to search and inspect the bombs under parking a lot vehicle. This robot is using fuzzy logic and subsumption algorithms to control the robot that movies underneath the vehicle. An OpenCV library and laser Hokuyo are added to Aria robot to complete the experiment for under vehicle inspection. This experiment was conducted at the indoor environment to demonstrate the efficiency of our methods to search objects and control the robot movements under vehicle. We got excellent results not only by controlling the robot movement but also inspecting object by the robot camera at same time. This success allowed us to know the requirement to construct a new cost effective robot with more functionality.

Keywords: Fuzzy logic, Mobile robots, OpenCV, Subsumption, Under vehicle inspection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
670 Automated Testing of Workshop Robot Behavior

Authors: Arne Hitzmann, Philipp Wentscher, Alexander Gabel, Reinhard Gerndt

Abstract:

Autonomous mobile robots can be found in a wide field of applications. Their types range from household robots over workshop robots to autonomous cars and many more. All of them undergo a number of testing steps during development, production and maintenance. This paper describes an approach to improve testing of robot behavior. It was inspired by the RoboCup @work competition that itself reflects a robotics benchmark for industrial robotics. There, scaled down versions of mobile industrial robots have to navigate through a workshop-like environment or operation area and have to perform tasks of manipulating and transporting work pieces. This paper will introduce an approach of automated vision-based testing of the behavior of the so called youBot robot, which is the most widely used robot platform in the RoboCup @work competition. The proposed system allows automated testing of multiple tries of the robot to perform a specific missions and it allows for the flexibility of the robot, e.g. selecting different paths between two tasks within a mission. The approach is based on a multi-camera setup using, off the shelf cameras and optical markers. It has been applied for test-driven development (TDD) and maintenance-like verification of the robot behavior and performance.

Keywords: Supervisory control, Testing, Markers, Mono Vision, Automation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
669 Novel Rao-Blackwellized Particle Filter for Mobile Robot SLAM Using Monocular Vision

Authors: Maohai Li, Bingrong Hong, Zesu Cai, Ronghua Luo

Abstract:

This paper presents the novel Rao-Blackwellised particle filter (RBPF) for mobile robot simultaneous localization and mapping (SLAM) using monocular vision. The particle filter is combined with unscented Kalman filter (UKF) to extending the path posterior by sampling new poses that integrate the current observation which drastically reduces the uncertainty about the robot pose. The landmark position estimation and update is also implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which seriously reduces the particle depletion problem, and introducing the evolution strategies (ES) for avoiding particle impoverishment. The 3D natural point landmarks are structured with matching Scale Invariant Feature Transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-Tree in the time cost of O(log2 N). Experiment results on real robot in our indoor environment show the advantages of our methods over previous approaches.

Keywords: Mobile robot, simultaneous localization and mapping, Rao-Blackwellised particle filter, evolution strategies, scale invariant feature transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
668 Single-Camera EKF-vSLAM

Authors: ML. Benmessaoud, A. Lamrani, K. Nemra, AK. Souici

Abstract:

This paper presents an Extended Kaman Filter implementation of a single-camera Visual Simultaneous Localization and Mapping algorithm, a novel algorithm for simultaneous localization and mapping problem widely studied in mobile robotics field. The algorithm is vision and odometry-based, The odometry data is incremental, and therefore it will accumulate error over time, since the robot may slip or may be lifted, consequently if the odometry is used alone we can not accurately estimate the robot position, in this paper we show that a combination of odometry and visual landmark via the extended Kalman filter can improve the robot position estimate. We use a Pioneer II robot and motorized pan tilt camera models to implement the algorithm.

Keywords: Mobile Robot, Navigation, vSLAM, EKF, monocular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
667 An Edge-based Text Region Extraction Algorithm for Indoor Mobile Robot Navigation

Authors: Jagath Samarabandu, Xiaoqing Liu

Abstract:

Using bottom-up image processing algorithms to predict human eye fixations and extract the relevant embedded information in images has been widely applied in the design of active machine vision systems. Scene text is an important feature to be extracted, especially in vision-based mobile robot navigation as many potential landmarks such as nameplates and information signs contain text. This paper proposes an edge-based text region extraction algorithm, which is robust with respect to font sizes, styles, color/intensity, orientations, and effects of illumination, reflections, shadows, perspective distortion, and the complexity of image backgrounds. Performance of the proposed algorithm is compared against a number of widely used text localization algorithms and the results show that this method can quickly and effectively localize and extract text regions from real scenes and can be used in mobile robot navigation under an indoor environment to detect text based landmarks.

Keywords: Landmarks, mobile robot navigation, scene text, text localization and extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692
666 The Development of Flying Type Moving Robot Using Image Processing

Authors: Suriyon Tansuriyavong, Yuuta Suzuki, Boonmee Choompol

Abstract:

Wheel-running type moving robot has the restriction on the moving range caused by obstacles or stairs. Solving this weakness, we studied the development of moving robot using airship. Our airship robot moves by recognizing arrow marks on the path. To have the airship robot recognize arrow marks, we used edge-based template matching. To control propeller units, we used PID and PD controller. The results of experiments demonstrated that the airship robot can move along the marks and can go up and down the stairs. It is shown the possibility that airship robot can become a robot which can move at wide range facilities.

Keywords: Template matching, moving robot, airship robot, PID control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
665 A Simulator for Robot Navigation Algorithms

Authors: Michael A. Folcik, Bijan Karimi

Abstract:

A robot simulator was developed to measure and investigate the performance of a robot navigation system based on the relative position of the robot with respect to random obstacles in any two dimensional environment. The presented simulator focuses on investigating the ability of a fuzzy-neural system for object avoidance. A navigation algorithm is proposed and used to allow random navigation of a robot among obstacles when the robot faces an obstacle in the environment. The main features of this simulator can be used for evaluating the performance of any system that can provide the position of the robot with respect to obstacles in the environment. This allows a robot developer to investigate and analyze the performance of a robot without implementing the physical robot.

Keywords: Applications of Fuzzy Logic and Neural Networksin Robotics, Artificial Intelligence, Embedded Systems, MobileRobots, Robot Navigation, Robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
664 Localization for Indoor Service Robot Using Natural Landmark on the Ceiling

Authors: Seung-Hun Kim, Changwoo Park

Abstract:

In this paper, we present a localization of a mobile robot with localization modules which have two ceiling-view cameras in indoor environments. We propose two kinds of localization method. The one is the localization in the local space; we use the line feature and the corner feature between the ceiling and wall. The other is the localization in the large space; we use the natural features such as bulbs, structures on the ceiling. These methods are installed on the embedded module able to mount on the robot. The embedded module has two cameras to be able to localize in both the local space and the large spaces. The experiment is practiced in our indoor test-bed and a government office. The proposed method is proved by the experimental results.

Keywords: Robot, Localization, Indoor, Ceiling vision, Local space, Large space, Complex space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
663 A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network

Authors: Amira Elsonbaty, Rawya Rizk, Mohamed Elksas, Mofreh Salem

Abstract:

In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.

Keywords: Ad hoc network, Computer vision based positioning, Dynamic collision avoidance, Multi-robot, Path planning algorithms, Self recharging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
662 Development of a Portable Welding Robot with EtherCAT Interface

Authors: Juyi Park, Sang-Bum Lee, Jin-Wook Kim, Ji-Yoon Kim, Jung-Min Kim, Hee-Hwan Park, Jae-Won Seo, Gye-Hyung Kang, Soo-Ho Kim

Abstract:

This paper presents a portable robot that is to use for welding process in shipbuilding yard. It has six degree of freedom and 3kg payload capability. Its weight is 21.5kg so that human workers can carry it to the work place. Its body mainly made of magnesium alloy and aluminum alloy for few parts that require high strength. Since the distance between robot and controller should be 50m at most, the robot controller controls the robot through EtherCAT. RTX and KPA are used for real time EtherCAT control on Windows XP. The performance of the developed robot was satisfactory, in welding of U type cell in shipbuilding yard.

Keywords: Portable welding robot, Shipbuilding, EtherCAT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
661 Robot Cell Planning

Authors: Allan Tubaileh, Ibrahim Hammad, Loay Al Kafafi

Abstract:

A new approach to determine the machine layout in flexible manufacturing cell, and to find the feasible robot configuration of the robot to achieve minimum cycle time is presented in this paper. The location of the input/output location and the optimal robot configuration is obtained for all sequences of work tasks of the robot within a specified period of time. A more realistic approach has been presented to model the problem using the robot joint space. The problem is formulated as a nonlinear optimization problem and solved using Sequential Quadratic Programming algorithm.

Keywords: Robotics, Layout.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
660 Wireless Power Transfer Application in GSM Controlled Robot for Home Automation

Authors: Kaibalya Prasad Panda, Nirakar Behera, Kamal Lochan Biswal

Abstract:

The aim of this paper is to combine the concept of wireless power transfer and GSM controlled robot for the application of home automation. The wireless power transfer concept can be well utilized to charge battery of the GSM controlled robot. When the robot has completed its task, it can come to the origin where it can charge itself. Robot can be charged wirelessly, when it is not performing any task. Combination of GSM controlled robot and wireless power transfer provides greater advantage such as; no wastage of charge stored in the battery when the robot is not doing any task. This provides greater reliability that at any instant, robot can do its work once it receives a message through GSM module. GSM module of the robot and user mobile phone must be interfaced properly, so that robot can do task when it receives message from same user mobile phone, not from any other phone. This paper approaches a robotic movement control through the smart phone and control of GSM robot is done by programming in Arduino environment. The commands used in controlling the robot movement are also explained.

Keywords: Arduino, automation, GSM controlled robot, GSM module, wireless power transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1118
659 A Stable Pose Estimation Method for the Biped Robot using Image Information

Authors: Sangbum Park, Youngjoon Han

Abstract:

This paper proposes a balance control scheme for a biped robot to trace an arbitrary path using image information. While moving, it estimates the zero moment point(ZMP) of the biped robot in the next step using a Kalman filter and renders an appropriate balanced pose of the robot. The ZMP can be calculated from the robot's pose, which is measured from the reference object image acquired by a CCD camera on the robot's head. For simplifying the kinematical model, the coordinates systems of individual joints of each leg are aligned and the robot motion is approximated as an inverted pendulum so that a simple linear dynamics, 3D-LIPM(3D-Linear Inverted Pendulum Mode) can be applied. The efficiency of the proposed algorithm has been proven by the experiments performed on unknown trajectory.

Keywords: Biped robot, Zero moment point, Balance control, Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136
658 Visual Object Tracking and Interception in Industrial Settings

Authors: Ahmet Denker, Tuğrul Adıgüzel

Abstract:

This paper presents a solution for a robotic manipulation problem. We formulate the problem as combining target identification, tracking and interception. The task in our solution is sensing a target on a conveyor belt and then intercepting robot-s end-effector at a convenient rendezvous point. We used an object recognition method which identifies the target and finds its position from visualized scene picture, then the robot system generates a solution for rendezvous problem using the target-s initial position and belt velocity . The interception of the target and the end-effector is executed at a convenient rendezvous point along the target-s calculated trajectory. Experimental results are obtained using a real platform with an industrial robot and a vision system over it.

Keywords: Object recognition, rendezvous planning, robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
657 Vision Based People Tracking System

Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti

Abstract:

In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.

Keywords: Camshift Algorithm, Computer Vision, Kalman Filter, Object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862
656 Application of Wireless Visual Sensor for Semi- Autonomous Mine Navigation System

Authors: Vinay Kumar Pilania, Debashish Chakravarty

Abstract:

The present paper represent the efforts undertaken for the development of an semi-automatic robot that may be used for various post-disaster rescue operation planning and their subsequent execution using one-way communication of video and data from the robot to the controller and controller to the robot respectively. Wireless communication has been used for the purpose so that the robot may access the unapproachable places easily without any difficulties. It is expected that the information obtained from the robot would be of definite help to the rescue team for better planning and execution of their operations.

Keywords: Mine environment, mine navigation, mine rescue robot, video data transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
655 Robot Task-Level Programming Language and Simulation

Authors: M. Samaka

Abstract:

This paper presents the development of a software application for Off-line robot task programming and simulation. Such application is designed to assist in robot task planning and to direct manipulator motion on sensor based programmed motion. The concept of the designed programming application is to use the power of the knowledge base for task accumulation. In support of the programming means, an interactive graphical simulation for manipulator kinematics was also developed and integrated into the application as the complimentary factor to the robot programming media. The simulation provides the designer with useful, inexpensive, off-line tools for retain and testing robotics work cells and automated assembly lines for various industrial applications.

Keywords: Robot programming, task-level programming, robot languages, robot simulation, robotics software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2948