Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 137

Search results for: rational Chebyshev

137 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature

Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard

Abstract:

The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.

Keywords: Tau method, semi-infinite, nonlinear ODE, rational Chebyshev, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
136 Computable Function Representations Using Effective Chebyshev Polynomial

Authors: Mohammed A. Abutheraa, David Lester

Abstract:

We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions.

Keywords: Approximation Theory, Chebyshev Polynomial, Computable Functions, Computable Real Arithmetic, Integration, Numerical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494
135 Generalized Chebyshev Collocation Method

Authors: Junghan Kim, Wonkyu Chung, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower degree polynomial. The constructed algorithm controls both the error and the time step size simultaneously and further the errors at each integration step are embedded in the algorithm itself, which provides the efficiency of the computational cost. For the assessment of the effectiveness, numerical results obtained by the proposed method and the Radau IIA are presented and compared.

Keywords: Generalized Chebyshev Collocation method, Generalized Chebyshev Polynomial, Initial value problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
134 Design of Nonlinear Observer by Using Chebyshev Interpolation based on Formal Linearization

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

This paper discusses a design of nonlinear observer by a formal linearization method using an application of Chebyshev Interpolation in order to facilitate processes for synthesizing a nonlinear observer and to improve the precision of linearization. A dynamic nonlinear system is linearized with respect to a linearization function, and a measurement equation is transformed into an augmented linear one by the formal linearization method which is based on Chebyshev interpolation. To the linearized system, a linear estimation theory is applied and a nonlinear observer is derived. To show effectiveness of the observer design, numerical experiments are illustrated and they indicate that the design shows remarkable performances for nonlinear systems.

Keywords: nonlinear system, nonlinear observer, formal linearization, Chebyshev interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
133 Numerical Inverse Laplace Transform Using Chebyshev Polynomial

Authors: Vinod Mishra, Dimple Rani

Abstract:

In this paper, numerical approximate Laplace transform inversion algorithm based on Chebyshev polynomial of second kind is developed using odd cosine series. The technique has been tested for three different functions to work efficiently. The illustrations show that the new developed numerical inverse Laplace transform is very much close to the classical analytic inverse Laplace transform.

Keywords: Chebyshev polynomial, Numerical inverse Laplace transform, Odd cosine series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
132 Multi-objective Optimization of Vehicle Passive Suspension with a Two-Terminal Mass Using Chebyshev Goal Programming

Authors: Chuan Li, Ming Liang, Qibing Yu

Abstract:

To improve the dynamics response of the vehicle passive suspension, a two-terminal mass is suggested to connect in parallel with the suspension strut. Three performance criteria, tire grip, ride comfort and suspension deflection, are taken into consideration to optimize the suspension parameters. However, the three criteria are conflicting and non-commensurable. For this reason, the Chebyshev goal programming method is applied to find the best tradeoff among the three objectives. A simulation case is presented to describe the multi-objective optimization procedure. For comparison, the Chebyshev method is also employed to optimize the design of a conventional passive suspension. The effectiveness of the proposed design method has been clearly demonstrated by the result. It is also shown that the suspension with a two-terminal mass in parallel has better performance in terms of the three objectives.

Keywords: Vehicle, passive suspension, two-terminal mass, optimization, Chebyshev goal programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
131 Best Coapproximation in Fuzzy Anti-n-Normed Spaces

Authors: J. Kavikumar, N. S. Manian, M. B. K. Moorthy

Abstract:

The main purpose of this paper is to consider the new kind of approximation which is called as t-best coapproximation in fuzzy n-normed spaces. The set of all t-best coapproximation define the t-coproximinal, t-co-Chebyshev and F-best coapproximation and then prove several theorems pertaining to this sets. 

Keywords: Fuzzy-n-normed space, best coapproximation, co-proximinal, co-Chebyshev, F-best coapproximation, orthogonality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
130 Arc Length of Rational Bezier Curves and Use for CAD Reparametrization

Authors: Maharavo Randrianarivony

Abstract:

The length  of a given rational B'ezier curve is efficiently estimated. Since a rational B'ezier function is nonlinear, it is usually impossible to evaluate its length exactly. The length is approximated by using subdivision and the accuracy of the approximation n is investigated. In order to improve the efficiency, adaptivity is used with some length estimator. A rigorous theoretical analysis of the rate of convergence of n to  is given. The required number of subdivisions to attain a prescribed accuracy is also analyzed. An application to CAD parametrization is briefly described. Numerical results are reported to supplement the theory.

Keywords: Adaptivity, Length, Parametrization, Rational Bezier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
129 The Conceptual and Procedural Knowledge of Rational Numbers in Primary School Teachers

Authors: R. M. Kashim

Abstract:

The study investigates the conceptual and procedural knowledge of rational number in primary school teachers, specifically, the primary school teachers level of conceptual knowledge about rational number and the primary school teachers level of procedural knowledge about rational numbers. The study was carried out in Bauchi metropolis in Bauchi state of Nigeria. A Conceptual and Procedural Knowledge Test was used as the instrument for data collection, 54 mathematics teachers in Bauchi primary schools were involved in the study. The collections were analyzed using mean and standard deviation. The findings revealed that the primary school mathematics teachers in Bauchi metropolis posses a low level of conceptual knowledge of rational number and also possess a high level of Procedural knowledge of rational number. It is therefore recommended that to be effective, teachers teaching mathematics most posses a deep understanding of both conceptual and procedural knowledge. That way the most knowledgeable teachers in mathematics deliver highly effective rational number instructions. Teachers should not ignore the mathematical concept aspect of rational number teaching. This is because only the procedural aspect of Rational number is highlighted during instructions; this often leads to rote - learning of procedures without understanding the meanings. It is necessary for teachers to learn rational numbers teaching method that focus on both conceptual knowledge and procedural knowledge teaching.

Keywords: Conceptual knowledge, primary school teachers, procedural knowledge, rational numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
128 A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type

Authors: M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long

Abstract:

This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.

Keywords: Singular integral equations, Cauchy kernel, Chebyshev polynomials, interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
127 The Number of Rational Points on Singular Curvesy 2 = x(x - a)2 over Finite Fields Fp

Authors: Ahmet Tekcan

Abstract:

Let p ≥ 5 be a prime number and let Fp be a finite field. In this work, we determine the number of rational points on singular curves Ea : y2 = x(x - a)2 over Fp for some specific values of a.

Keywords: Singular curve, elliptic curve, rational points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123
126 Best Proximity Point Theorems for MT-K and MT-C Rational Cyclic Contractions in Metric Spaces

Authors: M. R. Yadav, A. K. Sharma, B. S. Thakur

Abstract:

The purpose of this paper is to present a best proximity point theorems through rational expression for a combination of contraction condition, Kannan and Chatterjea nonlinear cyclic contraction in what we call MT-K and MT-C rational cyclic contraction. Some best proximity point theorems for a mapping satisfy these conditions have been established in metric spaces. We also give some examples to support our work.

Keywords: Cyclic contraction, rational cyclic contraction, best proximity point and complete metric space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
125 Primary School Teachers’ Conceptual and Procedural Knowledge of Rational Number and Its Effects on Pupils’ Achievement in Rational Numbers

Authors: R. M. Kashim

Abstract:

The study investigated primary school teachers’ conceptual and procedural knowledge of rational numbers and its effects on pupil’s achievement in rational numbers. Specifically, primary school teachers’ level of conceptual knowledge about rational numbers, primary school teachers’ level of procedural knowledge about rational numbers, and the effects of teachers conceptual and procedural knowledge on their pupils understanding of rational numbers in primary schools is investigated. The study was carried out in Bauchi metropolis in the Bauchi state of Nigeria. The design of the study was a multi-stage design. The first stage was a descriptive design. The second stage involves a pre-test, post-test only quasi-experimental design. Two instruments were used for the data collection in the study. These were Conceptual and Procedural knowledge test (CPKT) and Rational number achievement test (RAT), the population of the study comprises of three (3) mathematics teachers’ holders of Nigerian Certificate in Education (NCE) teaching primary six and 210 pupils in their intact classes were used for the study. The data collected were analyzed using mean, standard deviation, analysis of variance, analysis of covariance and t- test. The findings indicated that the pupils taught rational number by a teacher that has high conceptual and procedural knowledge understand and perform better than the pupil taught by a teacher who has low conceptual and procedural knowledge of rational number. It is, therefore, recommended that teachers in primary schools should be encouraged to enrich their conceptual knowledge of rational numbers. Also, the superiority performance of teachers in procedural knowledge in rational number should not become an obstruction of understanding. Teachers Conceptual and procedural knowledge of rational numbers should be balanced so that primary school pupils will have a view of better teaching and learning of rational number in our contemporary schools.

Keywords: Achievement, conceptual knowledge, procedural knowledge, rational numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
124 A Numerical Solution Based On Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem

Authors: Rajeev, N. K. Raigar

Abstract:

In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.

Keywords: Operational matrix of differentiation, Similarity transformation, Shifted second kind Chebyshev wavelets, Stefan problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
123 The Number of Rational Points on Conics Cp,k : x2 − ky2 = 1 over Finite Fields Fp

Authors: Ahmet Tekcan

Abstract:

Let p be a prime number, Fp be a finite field, and let k ∈ F*p. In this paper, we consider the number of rational points onconics Cp,k: x2 − ky2 = 1 over Fp. We proved that the order of Cp,k over Fp is p-1 if k is a quadratic residue mod p and is p + 1 if k is not a quadratic residue mod p. Later we derive some resultsconcerning the sums ΣC[x]p,k(Fp) and ΣC[y]p,k(Fp), the sum of x- and y-coordinates of all points (x, y) on Cp,k, respectively.

Keywords: Elliptic curve, conic, rational points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
122 The Number of Rational Points on Elliptic Curves and Circles over Finite Fields

Authors: Betül Gezer, Ahmet Tekcan, Osman Bizim

Abstract:

In elliptic curve theory, number of rational points on elliptic curves and determination of these points is a fairly important problem. Let p be a prime and Fp be a finite field and k ∈ Fp. It is well known that which points the curve y2 = x3 + kx has and the number of rational points of on Fp. Consider the circle family x2 + y2 = r2. It can be interesting to determine common points of these two curve families and to find the number of these common points. In this work we study this problem.

Keywords: Elliptic curves over finite fields, rational points on elliptic curves and circles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
121 Analysis of Statistical Data on Social Resources Dimension of Occupational Status Attainment: A Rational Choice Approach

Authors: Oleg Demchenko

Abstract:

The aim of the present study is to analyze empirical researches on the social resources dimension of occupational status attainment process and relate them to the rational choice approach. The analysis suggests that the existing data on the strength of ties aspect of social resources is insufficient and does not allow any implication concerning rational actor-s behavior. However, the results concerning work relation aspect are more encouraging.

Keywords: Social resources, status attainment, rational choice, weak ties, work-related ties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
120 Monotone Rational Trigonometric Interpolation

Authors: Uzma Bashir, Jamaludin Md. Ali

Abstract:

This study is concerned with the visualization of monotone data using a piecewise C1 rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and othertwo are leftfree. Figures are used widely to exhibit that the proposed scheme produces graphically smooth monotone curves.

Keywords: Trigonometric splines, Monotone data, Shape preserving, C1 monotone interpolant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
119 Edge Detection in Low Contrast Images

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey

Abstract:

The edges of low contrast images are not clearly distinguishable to human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.

Keywords: Chebyshev polynomials, Fractional order differentiator, Laplacian of Gaussian (LoG) method, Low contrast image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
118 Rational Points on Elliptic Curves 2 3 3y = x + a inF , where p 5(mod 6) is Prime

Authors: Gokhan Soydan, Musa Demirci, Nazli Yildiz Ikikardes, Ismail Naci Cangul

Abstract:

In this work, we consider the rational points on elliptic curves over finite fields Fp where p ≡ 5 (mod 6). We obtain results on the number of points on an elliptic curve y2 ≡ x3 + a3(mod p), where p ≡ 5 (mod 6) is prime. We give some results concerning the sum of the abscissae of these points. A similar case where p ≡ 1 (mod 6) is considered in [5]. The main difference between two cases is that when p ≡ 5 (mod 6), all elements of Fp are cubic residues.

Keywords: Elliptic curves over finite fields, rational points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
117 Numerical Solution of Riccati Differential Equations by Using Hybrid Functions and Tau Method

Authors: Changqing Yang, Jianhua Hou, Beibo Qin

Abstract:

A numerical method for Riccati equation is presented in this work. The method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The operational matrices of derivative and product of hybrid functions are presented. These matrices together with the tau method are then utilized to transform the differential equation into a system of algebraic equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.

Keywords: Hybrid functions, Riccati differential equation, Blockpulse, Chebyshev polynomials, Tau method, operational matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
116 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind

Authors: jianhua Hou, Changqing Yang, and Beibo Qin

Abstract:

A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function  approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.

Keywords: Hybrid functions, Fredholm integral equation, Blockpulse, Chebyshev polynomials, product operational matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
115 Generating Arabic Fonts Using Rational Cubic Ball Functions

Authors: Fakharuddin Ibrahim, Jamaludin Md. Ali, Ahmad Ramli

Abstract:

In this paper, we will discuss about the data interpolation by using the rational cubic Ball curve. To generate a curve with a better and satisfactory smoothness, the curve segments must be connected with a certain amount of continuity. The continuity that we will consider is of type G1 continuity. The conditions considered are known as the G1 Hermite condition. A simple application of the proposed method is to generate an Arabic font satisfying the required continuity.

Keywords: Continuity, data interpolation, Hermite condition, rational Ball curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
114 A Comparison of Recent Methods for Solving a Model 1D Convection Diffusion Equation

Authors: Ashvin Gopaul, Jayrani Cheeneebash, Kamleshsing Baurhoo

Abstract:

In this paper we study some numerical methods to solve a model one-dimensional convection–diffusion equation. The semi-discretisation of the space variable results into a system of ordinary differential equations and the solution of the latter involves the evaluation of a matrix exponent. Since the calculation of this term is computationally expensive, we study some methods based on Krylov subspace and on Restrictive Taylor series approximation respectively. We also consider the Chebyshev Pseudospectral collocation method to do the spatial discretisation and we present the numerical solution obtained by these methods.

Keywords: Chebyshev Pseudospectral collocation method, convection-diffusion equation, restrictive Taylor approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
113 The Number of Rational Points on Elliptic Curves y2 = x3 + b2 Over Finite Fields

Authors: Betül Gezer, Hacer Özden, Ahmet Tekcan, Osman Bizim

Abstract:

Let p be a prime number, Fpbe a finite field and let Qpdenote the set of quadratic residues in Fp. In the first section we givesome notations and preliminaries from elliptic curves. In the secondsection, we consider some properties of rational points on ellipticcurves Ep,b: y2= x3+ b2 over Fp, where b ∈ F*p. Recall that theorder of Ep,bover Fpis p + 1 if p ≡ 5(mod 6). We generalize thisresult to any field Fnp for an integer n≥ 2. Further we obtain someresults concerning the sum Σ[x]Ep,b(Fp) and Σ[y]Ep,b(Fp), thesum of x- and y- coordinates of all points (x, y) on Ep,b, and alsothe the sum Σ(x,0)Ep,b(Fp), the sum of points (x, 0) on Ep,b.

Keywords: Elliptic curves over finite fields, rational points on elliptic curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
112 System Overflow/Blocking Transients For Queues with Batch Arrivals Using a Family of Polynomials Resembling Chebyshev Polynomials

Authors: Vitalice K. Oduol, C. Ardil

Abstract:

The paper shows that in the analysis of a queuing system with fixed-size batch arrivals, there emerges a set of polynomials which are a generalization of Chebyshev polynomials of the second kind. The paper uses these polynomials in assessing the transient behaviour of the overflow (equivalently call blocking) probability in the system. A key figure to note is the proportion of the overflow (or blocking) probability resident in the transient component, which is shown in the results to be more significant at the beginning of the transient and naturally decays to zero in the limit of large t. The results also show that the significance of transients is more pronounced in cases of lighter loads, but lasts longer for heavier loads.

Keywords: batch arrivals, blocking probability, generalizedChebyshev polynomials, overflow probability, queue transientanalysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
111 Rigid Registration of Reduced Dimension Images using 1D Binary Projections

Authors: Panos D. Kotsas, Tony Dodd

Abstract:

The purpose of this work is to present a method for rigid registration of medical images using 1D binary projections when a part of one of the two images is missing. We use 1D binary projections and we adjust the projection limits according to the reduced image in order to perform accurate registration. We use the variance of the weighted ratio as a registration function which we have shown is able to register 2D and 3D images more accurately and robustly than mutual information methods. The function is computed explicitly for n=5 Chebyshev points in a [-9,+9] interval and it is approximated using Chebyshev polynomials for all other points. The images used are MR scans of the head. We find that the method is able to register the two images with average accuracy 0.3degrees for rotations and 0.2 pixels for translations for a y dimension of 156 with initial dimension 256. For y dimension 128/256 the accuracy decreases to 0.7 degrees for rotations and 0.6 pixels for translations.

Keywords: binary projections, image registration, reduceddimension images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
110 The Diophantine Equation y2 − 2yx − 3 = 0 and Corresponding Curves over Fp

Authors: Ahmet Tekcan, Arzu Özkoç, Hatice Alkan

Abstract:

In this work, we consider the number of integer solutions of Diophantine equation D : y2 - 2yx - 3 = 0 over Z and also over finite fields Fp for primes p ≥ 5. Later we determine the number of rational points on curves Ep : y2 = Pp(x) = yp 1 + yp 2 over Fp, where y1 and y2 are the roots of D. Also we give a formula for the sum of x- and y-coordinates of all rational points (x, y) on Ep over Fp.

Keywords: Diophantine equation, Pell equation, quadratic form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
109 The Number of Rational Points on Elliptic Curves y2 = x3 + a3 on Finite Fields

Authors: Musa Demirci, Nazlı Yıldız İkikardeş, Gökhan Soydan, İsmail Naci Cangül

Abstract:

In this work, we consider the rational points on elliptic curves over finite fields Fp. We give results concerning the number of points Np,a on the elliptic curve y2 ≡ x3 +a3(mod p) according to whether a and x are quadratic residues or non-residues. We use two lemmas to prove the main results first of which gives the list of primes for which -1 is a quadratic residue, and the second is a result from [1]. We get the results in the case where p is a prime congruent to 5 modulo 6, while when p is a prime congruent to 1 modulo 6, there seems to be no regularity for Np,a.

Keywords: Elliptic curves over finite fields, rational points, quadratic residue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
108 The Elliptic Curves y2 = x3 - t2x over Fp

Authors: Ahmet Tekcan

Abstract:

Let p be a prime number, Fp be a finite field and t ∈ F*p= Fp- {0}. In this paper we obtain some properties of ellipticcurves Ep,t: y2= y2= x3- t2x over Fp. In the first sectionwe give some notations and preliminaries from elliptic curves. In the second section we consider the rational points (x, y) on Ep,t. Wegive a formula for the number of rational points on Ep,t over Fnp for an integer n ≥ 1. We also give some formulas for the sum of x?andy?coordinates of the points (x, y) on Ep,t. In the third section weconsider the rank of Et: y2= x3- t2x and its 2-isogenous curve Et over Q. We proved that the rank of Etand Etis 2 over Q. In the last section we obtain some formulas for the sums Σt∈F?panp,t for an integer n ≥ 1, where ap,t denote the trace of Frobenius.

Keywords: Elliptic curves over finite fields, rational points onelliptic curves, rank, trace of Frobenius.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800