Integrable Heisenberg Ferromagnet Equations with Self-Consistent Potentials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33132
Integrable Heisenberg Ferromagnet Equations with Self-Consistent Potentials

Authors: Gulgassyl Nugmanova, Zhanat Zhunussova, Kuralay Yesmakhanova, Galya Mamyrbekova, Ratbay Myrzakulov

Abstract:

In this paper, we consider some integrable Heisenberg Ferromagnet Equations with self-consistent potentials. We study their Lax representations. In particular we derive their equivalent counterparts in the form of nonlinear Schr¨odinger type equations. We present the integrable reductions of the Heisenberg Ferromagnet Equations with self-consistent potentials. These integrable Heisenberg Ferromagnet Equations with self-consistent potentials describe nonlinear waves in ferromagnets with some additional physical fields.

Keywords: Spin systems, equivalent counterparts, integrable reductions, self-consistent potentials.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1338382

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744

References:


[1] M. Lakshmanan. Phys. Lett. A. 61 (1977) 53.
[2] L. Takhtajian Phys. Lett. A. 64 (1977) 235.
[3] R. Myrzakulov. On some integrable and nonintegrable soliton equations of magnets I-IV (HEPI, Alma-Ata, 1987).
[4] L. Martina, Kur. Myrzakul, R. Myrzakulov, G. Soliani. J. Math. Phys. 42 (2001) 1397.
[5] R. Myrzakulov, A.K. Danlybaeva, G.N. Nugmanova. Theor. Math. Phys. 118 (1999) 441.
[6] R. Myrzakulov, M. Lakshmanan, S. Vijayalakshmi, A. Danlybaeva. J. Math. Phys. 39 (1998) 3765.
[7] R. Myrzakulov, S. Vijayalakshmi, R. Syzdykova, Lakshmanan M. J. Math. Phys. 39 (1998) 2122.
[8] R. Myrzakulov, G. Nugmanova, R. Syzdykova. J. Phys. A: Math. Theor. 31 (1998) 9535.
[9] R. Myrzakulov, S. Vijayalakshmi, G. Nugmanova, M. Lakshmanan. Phys. Lett. A. 233 (1997) 391.
[10] R. Myrzakulov, M. Daniel, R. Amuda. Physica A. 234 (1997) 715.
[11] S.C. Anco, R. Myrzakulov. J. Geom. Phys. 60 (2010) 1576.
[12] R. Myrzakulov, F.K. Rahimov, K. Myrzakul, N.S. Serikbaev. On the geometry of stationary Heisenberg ferromagnets. In book ”Non-linear waves: Classical and Quantum Aspects”, Kluwer Academic Publishers, Dordrecht, Netherlands, 2004, pp. 543-549.
[13] R. Myrzakulov, N.S. Serikbaev, Kur. Myrzakul, F.K. Rahimov. NATO Sci. Ser. II, Math. Phys. Chem. 153 (2004) 535.
[14] R. Myrzakulov, G.K. Mamyrbekova, G.N. Nugmanova, M. Lakshmanan. Phys. Lett A. 378 (2014) 2118.
[15] S.P. Burtsev, I.R. Gabitov. Phys. Rev. A. 49 (1994) 2065.
[16] K. Porsezian, K. Nakkeeran. Phys. Rev. Lett. 74 (1995) 2941.
[17] Chuanzhong Li, Jingsong He, K. Porsezian. Rogue waves of the Hirota and the Maxwell-Bloch equations, (arXiv:1205.1191).
[18] Chuanzhong Li, Jingsong He. Darboux transformation and positons of the inhomogeneous Hirota and the Maxwell-Bloch equations, (arXiv:1210.2501).