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Abstract—In this article, we propose a new approximate procedure
based on He’s variational iteration method for solving nonlinear
hyperbolic equations. We introduce two transformations q = ut and
σ = ux and formulate a first-order system of equations. We can
obtain the approximation solution for the scalar unknown u, time
derivative q = ut and space derivative σ = ux, simultaneously.
Finally, some examples are provided to illustrate the effectiveness of
our method.
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I. INTRODUCTION

IN this article, we consider the following hyperbolic wave
equation

utt − uxx +Nu = f(x, t), (1)

where N is a nonlinear operator.
The hyperbolic wave equations are a high-order partial

differential equations with mixed partial derivative with respect
to time and space, which describe heat and mass transfer,
reaction diffusion and nerve conduction, and other physical
phenomena. In recent years, a lot of researchers have studied
and proposed many numerical methods for second-order hy-
perbolic wave equations, such as finite element methods [1],
[2], [3], mixed finite element methods [4], [5], [6], [7], [8],
[9], [10], [11], the reduced finite volume element formulation
based on POD method [12], He’s variational iteration method
[13], [14], [15], [16], [17], [18], [19], He’s homotopy pertur-
bation method[16] and Adomian decomposition method [20],
[21] .

In 1997, He [22] proposed the variational iteration method
(VIM) for some nonlinear partial differential equations. From
then on, the He’s VIM has been applied to solve many linear
and nonlinear differential equations [23], [24], [25], [26], [27],
[28]. In [13], [14], [15], [16], [17], [18], [19], He’s variational
iteration method were studied and analysed for second-order
hyperbolic wave equations.
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In this article, our aim is to propose a new approximate
procedure based on He’s variational iteration method (VIM)
to find approximate solutions for the second-order hyperbolic
equations. We introduce two transformations q = ut and
σ = ux and formulate a first-order system of equations, which
has three equalities: correction functional, integral equation
and differential equation. Our method can obtain the approx-
imation solution for the scalar unknown u, time derivative
q = ut and space derivative σ = ux, simultaneously.

II. NEW PROCEDURE BASED ON VIM

Introducing the two auxiliary variables

q = ut and σ = ux, (2)

the equation (1) can be rewritten as the following first-order
system ⎧⎪⎨

⎪⎩
(a) qt − σx +Nu = f(x, t),

(b) ut − q = 0,

(c) σ = ux.

(3)

According to the variational iteration method, we can con-
struct the following correction functional for equation (3a)

qn+1(x, t) =qn(x, t) +

∫ t

0

λ(ξ)[
∂qn(x, ξ)

∂ξ

− ∂σ̃n(x, ξ)

∂x
+Nũn(x, ξ)− f(x, ξ)]dξ,

(4)

and the following two equalities

un+1(x, t) =

∫ t

0

qn+1(x, ξ)dξ + un(x, 0), (5)

and

σn+1(x, t) =
∂un+1

∂x
(x, t). (6)

Choosing the function u0(x, t) with functions σ0(x, t) =
u0x(x, t), q0(x, t) = u0t(x, t), we can obtain the exact
solution by

u(x, t) = lim
n→∞un(x, t),

q(x, t) = lim
n→∞ qn(x, t),

σ(x, t) = lim
n→∞σn(x, t).

(7)
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III. NUMERICAL EXAMPLE

In this section, we will provide some examples to illustrate
the effectiveness of our method.

Example 1: Use the new procedure to solve the second
hyperbolic equation with initial and boundary condition⎧⎪⎨

⎪⎩
utt − uxx = 0, 0 < x < π, t > 0,

u(0, t) = 0, u(π, t) = 0,

u(x, 0) = 0, ut(x, 0) = sinx.

(8)

From (4)-(6), we can obtain λ = −1. With the given
initial values, we can choose u0(x, t) = t sinx, q0(x, t) =
sinx, σ0(x, t) = t cosx. Using (4)-(6), we can obtain the
following successive approximations

u0(x, t) = t sinx,

q0(x, t) = sinx,

σ0(x, t) = t cosx,

q1(x, t) = sinx− 1

2
t2 sinx,

u1(x, t) = t sinx− 1

3!
t3 sinx,

σ1(x, t) = t cosx− 1

3!
t3 cosx,

q2(x, t) = sinx− 1

2
t2 sinx+

1

24
t4 sinx,

u2(x, t) = t sinx− 1

3!
t3 sinx+

1

5!
t5 sinx,

σ2(x, t) = t cosx− 1

3!
t3 cosx+

1

5!
t5 cosx,

· · · · · · · · ·
qn(x, t) = sinx

(
1− 1

2!
t2 +

1

4!
t4 − 1

6!
t6 + · · ·

)
,

un(x, t) = sinx
(
t− 1

3!
t3 +

1

5!
t5 − 1

7!
t7 + · · ·

)
,

σn(x, t) = cosx
(
t− 1

3!
t3 +

1

5!
t5 − 1

7!
t7 + · · ·

)
.

(9)

Use Taylor series for sin t and cos t and (7) to obtain the exact
solution

q(x, t) = sinx cos t,

u(x, t) = sinx sin t,

σ(x, t) = cosx sin t.

(10)

In Table I and Figs. 1-6, we compare the new procedure
solution u1(x, t), q1(x, t), σ1(x, t) with the exact solution
u(x, t), q(x, t), σ(x, t), respectively. It is easy to see that our
method is effective.

Example 2: Use the new procedure to solve the linear
inhomogeneous Klein-Gordon equation([20],P373) with initial
condition {

utt − uxx + u = 2 sinx,

u(x, 0) = sinx, ut(x, 0) = 1.
(11)

From (4)-(6), we can obtain λ = −1. With the given
initial values, we can choose u0(x, t) = t + sinx, q0(x, t) =
1, σ0(x, t) = cosx. Using (4)-(6), we can obtain the following
successive approximations

u0(x, t) = t+ sinx,

q0(x, t) = 1,

σ0(x, t) = cosx,

q1(x, t) = 1− t2

2
,

u1(x, t) = t+ sinx− 1

3!
t3,

σ1(x, t) = cosx,

q2(x, t) = 1− t2

2!
+
t4

4!
,

u2(x, t) = t+ sinx− 1

3!
t3 +

1

5!
t5,

σ2(x, t) = cosx,

· · · · · · · · ·
qn(x, t) = 1− 1

2!
t2 +

1

4!
t4 − 1

6!
t6 + · · · ,

un(x, t) = sinx+
(
t− 1

3!
t3 +

1

5!
t5 − 1

7!
t7 + · · ·

)
,

σn(x, t) = cosx.

(12)

Using Taylor series for sin t and cos t and (7), we obtain the
exact solution

q(x, t) = cos t,

u(x, t) = sinx+ sin t,

σ(x, t) = cosx.

(13)

Example 3: Use the new procedure to solve the nonlinear
inhomogeneous Klein-Gordon equation([20],P380) with initial
condition {

utt − uxx − u+ u2 = xt+ x2t2,

u(x, 0) = 1, ut(x, 0) = x.
(14)

From (4)-(6), we can obtain λ = −1. With the given
initial values, we can choose u0(x, t) = 1 + xt, q0(x, t) =
x, σ0(x, t) = t. Using (4)-(6), we can obtain the following
successive approximations

u0(x, t) = 1 + tx,

q0(x, t) = x,

σ0(x, t) = t,

q1(x, t) = x,

u1(x, t) = 1 + tx,

σ1(x, t) = t.

(15)

From (15), we know that the exact solution

u(x, t) = 1 + tx,

q(x, t) = x,

σ(x, t) = t.

(16)
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TABLE I

COMPARISON BETWEEN THE EXACT SOLUTION WITH VIM
SOLUTION {u1(x, t), q1(x, t), σ1(x, t)}.

x t u(x, t) q(x, t) σ(x, t)
π
6 0.2 0.099335 0.490033 0.172053
π
3 0.4 0.337246 0.797662 0.194709
2π
3 0.6 0.488995 0.714762 -0.282321
5π
6 0.8 0.358678 0.348353 -0.621249

x t u1(x, t) q1(x, t) σ1(x, t)
π
6 0.2 0.099333 0.49 0.17205
π
3 0.4 0.337173 0.796743 0.194667
2π
3 0.6 0.488438 0.710141 -0.282
5π
6 0.8 0.357333 0.34 -0.618919

IV. CONCLUDING REMARKS

In this article, we propose a new approximate procedure
based on He’s Variational iteration method for second-order
hyperbolic wave equations. We split the hyperbolic wave
equation (1) into a first-order system (3) of equations by
introducing two transformations q = ut and σ = ux and
formulate a new iteration system (4)-(6). Our procedure can
obtain the approximation solution for the scalar unknown u,
time derivative q = ut and space derivative σ = ux, simulta-

Fig. 1. The surface of u1(x, t)

neously. We choose some examples to show the effectiveness
of our method.

Fig. 3. The surface of q1(x, t)

Fig. 2. The surface of u(x, t)

1Fig. 5. The surface of σ (x, t)
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