A New Approximate Procedure Based On He’s Variational Iteration Method for Solving Nonlinear Hyperbolic Wave Equations
Authors: Jinfeng Wang, Yang Liu, Hong Li
Abstract:
In this article, we propose a new approximate procedure based on He’s variational iteration method for solving nonlinear hyperbolic equations. We introduce two transformations q = ut and σ = ux and formulate a first-order system of equations. We can obtain the approximation solution for the scalar unknown u, time derivative q = ut and space derivative σ = ux, simultaneously. Finally, some examples are provided to illustrate the effectiveness of our method.
Keywords: Hyperbolic wave equation, Nonlinear, He’s variational iteration method, Transformations
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087924
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150References:
[1] Y.R. Yuan, H. Wang, Error estimates for the finite element methods of nonlinear hyperbolic equations, J. Systems Sci. Math. Sci., 5 (3) (1985) 161-171.
[2] S. Larsson, V. Thome, L.B. Wahlbin, Finite element methods for a strongly damped wave equation, IMA J. Numer. Anal. 11 (1991) 115-142.
[3] D.Y. Shi, B.Y. Zhang, High accuracy analysis of the finite element method for nonlinear viscoelastic wave equations with nonlinear boundary conditions, J Syst. Sci. Complex. 24 (2011) 795-802.
[4] Y. Liu, J.F. Wang, H. Li, W. Gao, S. He, A new splitting H -Galerkin mixed method for pseudo-hyperbolic equations, Internat. J. Eng. Natur. Sci. 5 (2) (2011) 58-63.
[5] Y. Liu, H. Li, J.F. Wang, S. He, Splitting positive definite mixed element methods for pseudo-hyperbolic equations, Numer. Methods Partial Differential Eq. 28 (2) (2012) 670-688.
[6] Y. Liu, H. Li, H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations, Appl. Math. Comput. 212 (2009) 446-457.
[7] L.C. Cowsar, T.F. Dupont, M.F. Wheeler, A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions. SIAM J. Numer. Anal. 33 (1996) 492- 504. 8] J. S. Zhang, D.P. Yang, A splitting positive definite mixed element method for second-order hyperbolic equations, Numer. Methods Partial Differential Eq. 25 (2009) 622-636.
[9] H. Guo, H.X. Rui, Least-squares Galerkin procedures for pseudohyperbolic equations, Appl. Math. Comput. 189 (2007), 425-439.
[10] A.K. Pani, J.Y. Yuan, Mixed finite element method for a strongly damped wave equation, Numer. Methods Partial Differential Eq. 17 (2011) 105- 119.
[11] Y.P. Chen, Y.Q. Huang, The superconvergence of mixed finite element methods for nonlinear hyperbolic equations, Commun. Nonlinear Sci. Numer. Simul. 3 (1998) 155-158.
[12] Z.D. Luo, H. Li, Y.J. Zhou, X.M. Huang, A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem, J. Math. Anal. Appl. 385 (1) (2012) 310-321.
[13] D.H. Shou, J.H. He, Beyond Adomian method: The variational iteration method for solving heat-like and wave-like equations with variable coefficients, Phys. Lett. A. 372 (3) (2008) 233-237.
[14] E. Yusufoglu, A. Bekir, Application of the variational iteration method to the regularized long wave equation, Comput. Math. Appl. 54 (2007) 1154-1161.
[15] J. Biazar, H. Ghazvini, An analytical approximation to the solution of a wave equation by a variational iteration method, Appl. Math. Lett. 21 (2008) 780-785.
[16] B. Raftari, A. Yildirim, Analytical solution of second-order hyperbolic telegraph equation by variational iteration and homotopy perturbation methods, Results. Math. 61 (2012) 13-28.
[17] D.K Salkuyeh, H.R. Ghehsareh, Convergence of the Variational Iteration Method for the Telegraph Equation with Integral Conditions, Numer Methods Partial Differential Eq. 28(2) (2012): 670-688.
[18] M. Dehghan, A. Saadatmandi, Variational iteration method for solving the wave equation subject to an integral conservation condition, Chaos Solitons Fractals. 41 (2009) 1448-1453.
[19] A.M. Wazwaz, The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations, Comput. Math. Appl. 54 (7-8) (2007) 926-932.
[20] Abdul-Majid Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education Press, Beijing, 2009.
[21] R. Rajaram, M. Najafi, Analytical treatment and convergence of the Adomian decomposition method for a system of coupled damped wave equations, Appl. Math. Comput. 212 (1) (2009) 72-81.
[22] J.H. He, A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 2 (4) (1997) 203-205.
[23] J.H. He, Variational iteration methodłsome recent results and new interpretations, J. Comput. Appl. Math. 207 (1) (2007) 3-17.
[24] J.H. He, Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern Phys. B 20 (10) (2006) 1141-1199.
[25] J.H. He, G.C. Wu, F. Austin, Variational iteration method which should be followed, Nonlinear Sci. Lett. A. 1 (2010), 1-30.
[26] J.H. He, X.H. Wu, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos, Solitons Fractals. 29 (2006) 108-113.
[27] S.Q. Wang, J.H. He, Variational iteration method for solving integrodifferential equations, Phys. Lett. A. 367 (2007) 188-191.
[28] J.H. He, A variational iteration approach to nonlinear problems and its applications, Mech. Appl. 20 (1) (1998) 30-31.