Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
On Symmetries and Exact Solutions of Einstein Vacuum Equations for Axially Symmetric Gravitational Fields
Authors: Nisha Goyal, R.K. Gupta
Abstract:
Einstein vacuum equations, that is a system of nonlinear partial differential equations (PDEs) are derived from Weyl metric by using relation between Einstein tensor and metric tensor. The symmetries of Einstein vacuum equations for static axisymmetric gravitational fields are obtained using the Lie classical method. We have examined the optimal system of vector fields which is further used to reduce nonlinear PDE to nonlinear ordinary differential equation (ODE). Some exact solutions of Einstein vacuum equations in general relativity are also obtained.Keywords: Gravitational fields, Lie Classical method, Exact solutions.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1082363
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934References:
[1] A. T. Ali, New exact solutions of the Einstein vacuum equations for rotating axially symmetric fields, Physica Scripta, vol. 79, 2009, pp. 1-8.
[2] S. Ashghar, M. Mushtaq and A. H. Kara, Exact solutions using symmetry methods and conservation laws for the viscous flow through expandingcontracting channels, Applied Mathematics and Modelling, vol. 32, 2008, pp. 2936-2940.
[3] S. K. Attallaha, M. F. El-Sabbagh and A. T. Ali, Isovector fields and similarity solutions of Einstein vacuum equations for rotating fields, Communication in Nonlinear Science and Numerical Simulation, vol. 12, 2007, pp. 1153-1161.
[4] O. P. Bhutani and K. Singh, Generalised similarity solutions for the type D fluid in five-dimensional space, Journal of Mathematical Physics, vol. 39, 1998, pp. 3203-3212.
[5] O. P. Bhutani, K. Singh and D. K. Kalra, On certain classes of exact solutions of Einstein equations for the rotating fields in the conventional and non-conventional form, International Journal of Engineering Science, vol. 41, 2003, pp. 769-786.
[6] A. Bihlo and R. O. Popovych, Lie symmetries and exact solutions of the barotropic vorticity equation, Journal of Mathematical Physics, vol. 50, 2009, pp. 1-12.
[7] G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Springer-verlag, New York, 2002.
[8] G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equations, Springer-verlag, New York, 1974.
[9] M. S. Bruzon, M. L. Gandarias and J. C. Camcho, Symmetry analysis and solutions for a generalization of a family of BBM equations, Journal of Nonlinear Mathematical Physica, vol. 15, 2008, pp. 81-90.
[10] G. Cicogna, F. Ceccherini and F. Pegoraro, Applications of symmetry methods to the theory of Plasma physics, Symmetry, Integrability and Geometry: Methods and Applications, vol. 2, 2006, pp. 1-17.
[11] S. E. Harris and P. A. Clarkson, Painlev'e analysis and similarity reductions for the Magma equation, Symmetry, Integrability and Geometry: Methods and Applications, vol. 2, 2006, pp. 1-17.
[12] N. H. Ibragimov, CRC handbook of Lie Group Analysis of Differential Equations, CRC Press, Boca Raton, FL., 1996.
[13] V. Naicker, K. Andriopoulos and P. G. L. Leach, Symmetry reductions of a Hamilton-Jacobi-Bellman equations arising in finacial mathematics, Journal of Nonlinear Mathematical Physics, vol. 12, 2005, pp. 268-283.
[14] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1993.
[15] K. Sachwarzschild, Uber das Gravitationsfeld einer Kugel aus inkompressibler Flussigkeit nach der Einsteinschen Theorie, Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, 1916.
[16] K. Singh and R. K. Gupta, Lie symmetries and exact solutions of a new generalized Hirota-Sustuma coupled KdV system with variable coefficients, International Journal of Engineering Science, vol. 44, 2006, pp. 241-255.
[17] S. Steinberg, Symmetry Methods in Differential Equations, Technical Report No. 367, The University of New Mexico, 1979.
[18] H. Stephani, D. Kramer., M. MacCallum and E. Herlt Exact Solutions of Einstein Field Equations, Cambridge University Press, Cambridge, 1980.
[19] H. Weyl, Zur gravitationstheorie, Annals of Physik, vol. 54, 1917, pp. 117-145.
[20] R.Wiltshire, Isotropy, shear, symmetry and exact solutions for relativistic fluid spheres, Classical Quantum Gravity, vol. 23, 2006, pp. 1365-1380.
[21] N. Goyal and R. K. Gupta, Symmetries and exact solutions of non diagonal Einstein-Rosen metrics, Physica Scripta, vol. 85, 2011, pp. 015004.