**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30982

##### Effect of Implementation of Nonlinear Sequence Transformations on Power Series Expansion for a Class of Non-Linear Abel Equations

**Authors:**
Javad Abdalkhani

**Abstract:**

**Keywords:**
Mathematica,
Nonlinear transformation,
Abel Volterra Equations

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1056198

**References:**

[1] J. Abdalkhani, On Exact and Approximate Solutions of Integral Equations of the Second Kind Using Maple, Proceedings Maple Conference (2005), 191-197.

[2] J. Abdalkhani, A Modified Approach to the Numerical Solution of Linear Weakly Singular Volterra Integral Equations of the Second Kind, Journal of Integral Equations and Applications, Vol. 5 (1993), no.2 149-166.

[3] M. Abramowitz, I,A. Stegun (editors) Handbook of Mathematical Functions. Dover, Canada, ninth printing 1964.

[4] K.E. Atkinson The Numerical Solution of Integral Equations of the Second Kind. Cambridge Monographs on Applied and Computational Mathematics. 1997

[5] H. Brunner and P.van der Houwen, The Numerical Solution of Volterra Equations. North-Holland, Amsterdam, 1986.

[6] H. Brunner, A. Pedas and G. Vainikko The Piecewise Polynomial Collocation Method for Nonlinear Weakly Singular Volterra Equations, Mathematics of Computations, Vol.5 (1999), no.227 1079-1095.

[7] H. Brunner, A. Pedas, G. Vainikko Piecewise Polynomial Collocation Methods for Linear Volterra Integro-Differential Equations with Weakly Singular Kernels, SIAM J. Numer. Anal., Vol.39 (2001), no.3 957-982.

[8] Y. Cao, G. Cerezo, T.Herdman, J.Turi Singularity Expansion for A Class of Neutral Equations, Journal of Integral Equations and Applications. Vo.19, Number 1, Spring 2007. 13-32

[9] Y. Cao, T. Herdman and Y. Xu A Hybird Collocation Method for Volterra Integral Equations with Weakly Singular Kernels . SIAM J. Numer. Anal., Vol.41 (2003), no.1 364-381.

[10] G. Dahlquist, A┬¿ .Bjo┬¿rck, Translated by N. Anderson Numerical Methods. Prentice-Hall, 1974.

[11] M. Golberg Discrete Ploynomial-Based Galerkin Methods for Fredholm Integral Equation, Journal of Integral Equations and Applications.Vo.6, Number 2, Spring 1994. 197-211

[12] W. Hackbusch, Integral Equations Theory and Numerical treatment. Birkh┬¿auser, 1995.

[13] F. R. de Hoog and R. Weiss Higher Order Methods for a Class of Volterra Integral Equations with Weakly Singular Kernels, SIAM J.Numer.Anal.11(1974),1166-1180.

[14] Q. Hu Stieltjes Derivatives and β-Polynomial Spline Collocation for Volterra Integro-Differential Equations with Singularities, SIAM J.Numer.Anal.Vol.33, No.1 (1996),208-220.

[15] R. P. Kanwal, Linear Integral Equations Theory & Technique, Second Edition, Birkh┬¿auser 1996.

[16] R. Kress, Linear Integral Equations, , Springer-Verlag,Berlin 1989.

[17] P. Linz, Analytical and Numerical Methods for Volterra Equations. SIAM Studies in Applied Mathematics, SIAM, 1985.

[18] C. Lubich, Runge-Kutta Theory for Volterra and Abel Integral equations of the Second Kind, Math.Comp., Vol.41 (1983), 87-103.

[19] R.K. Miller. , Nonlinear Volterra Integral Equations.W.A. Benjamin,Inc, 1971.

[20] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes. The Art of Scientific Computing. Third Edition,Cambridge 2007.

[21] J. O-Conner, The nonlinear cooling of semi-infinite solid-Pade approximation methods, CTAC, Vol.83 (1984), 881-892

[22] A. Pipkin, A Course on Integral Equations. Springer-Verlag, 1991.

[23] J. Stoer and R. Bulirsch Introduction to Numerical Analysis. Second Edition Springer-Verlag, 1993.

[24] E.J. Weniger Nonlinear Sequence Transformation for the Acceleration of Convergence and the Summation of Divergent Series . Computer Physics Report Vol. 10,pp. 189- 371, 1989.