**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30843

##### On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

**Authors:**
A. Giniatoulline

**Abstract:**

**Keywords:**
Navier-Stokes equations,
Galerkin Method,
nonlinear partial differential equations,
Sobolev spaces,
stratified fluid

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1126543

**References:**

[1] B. Cushman-Roisin, and J. Beckers, Introduction to Geophysical Fluid Dynamics, New York: Acad. Press, 2011, ch3.

[2] D. Tritton, Physical Fluid Dynamics, Oxford: Oxford UP, 1990, ch.2.

[3] A. Aloyan, “Numerical modeling of remote transport of admixtures in atmosphere,” Numerical Methods in the Problems of Atmospheric Physics and Environment Protection, Novosibirsk: Ac. Sci. USSR, 1985, pp. 55-72.

[4] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, New York: AMS Chelsea Publishing, 2000.

[5] L. Tartar, An Introduction to Navier-Stokes Equations and Oceanography, Berlin: Springer, 2006.

[6] H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Zurich: Birkhäuser, 2012.

[7] A. Giniatoulline, and T. Castro, “On the Spectrum of Operators of Inner Waves in a Viscous Compressible Stratified Fluid,” Journal Math. Sci. Univ. of Tokyo, 2012, no. 19, pp. 313-323.

[8] A. Giniatoulline, and T. Castro, “On the Existence and Uniqueness of Solutions for Nonlinear System Modeling Three-Dimensional Viscous Stratified Flows,” Journal of Applied Mathematics and Physics, 2014, no. 2, pp. 528-539.

[9] O. Ladyzhenskaya, The Mathematical Theory of the Viscous Incompressible Flow, New York: Gordon and Breach, 1969.

[10] L. Cattabriga, “Su un Problema al Contorno Relativo al Sistema di Equazioni di Stokes,” Rendiconti del Seminario Matematico della Universita di Padova, 1961, vol. 31, pp. 308-340.

[11] V. Maslennikova, and M. Bogovski, “Elliptic Boundary Value Problems in Unbounded Domains with Noncompact and Nonsmooth Boundaries,” Milan Journal of Mathematics, 1986, no. 56, vol. 1, pp.125-138.

[12] T. Kato, Perturbation theory for Linear Operators, Berlin: Springer, 1966.

[13] S. Agmon, A. Douglis, and L. Nirenberg, “Estimates Near the Boundary for Solutions of Elliptic Differential,” Comm. Pure and Appl. Mathematics, 1964, vol. 17, pp. 35-92.

[14] A. Giniatoulline, “Mathematical Study of Some Models of the Atmosphere Dynamics Counting with Heat Transfer and Humidity,” Recent Advances on Computational Science and Applications, Seoul: WSEAS Press, 2015, vol. 52, pp. 55-61.