Search results for: Needle diameter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 565

Search results for: Needle diameter

565 Effect of Needle Diameter on the Morphological Structure of Electrospun n-Bi2O3/Epoxy-PVA Nanofiber Mats

Authors: Bassam M. Abunahel, Nurul Zahirah Noor Azman, Munirah Jamil

Abstract:

The effect of needle diameter on the morphological structure of electrospun n-Bi2O3/epoxy-PVA nanofibers has been investigated using three different types of needle diameters. The results were observed and investigated using two techniques of scanning electron microscope (SEM). The first technique is backscattered SEM while the second is secondary electron SEM. The results demonstrate that there is a correlation between the needle diameter and the morphology of electrospun nanofibers. As the internal needle diameter decreases, the average nanofiber diameter decreases and the fibers get thinner and smoother without agglomeration or beads formation. Moreover, with small needle diameter the nanofibrous porosity get larger compared with large needle diameter.

Keywords: Needle diameter, fiber diameter, agglomeration, porosity, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015
564 Effect of Needle Height on Discharge Coefficient and Cavitation Number

Authors: Azadeh Yazdi, Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Amirmasoud Hamedi

Abstract:

Cavitation inside diesel injector nozzle is investigated using Reynolds-Stress-Navier stokes equations. Schnerr-Sauer cavitation model is used for modeling cavitation inside diesel injector nozzle. The carrying fluid utilized in the current study is diesel fuel. The flow is verified at the beginning by comparing with the previous experimental data and it was found that K-Epsilon turbulent model could lead to a better accuracy comparing to K-Omega turbulent model. Moreover, mass flow rate obtained numerically is compared with the experimental value and discrepancy was found to be less than 5% - which shows the accuracy of the current results. Finally, a real-size four-hole nozzle is investigated and the flow inside it is visualized based on velocity profile, discharge coefficient and cavitation number. It was found that the mesh density could be reduced significantly by utilizing periodic boundary condition. Velocity contour at the mid nozzle showed that maximum value of velocity occurs at the end of the needle before entering the orifice area. Last but not least, at the same boundary conditions, when different needle heights were utilized, it was found that as needle height increases with an increase in cavitation number, discharge coefficient increases, while the mentioned increases is more tangible at smaller values of needle heights.

Keywords: cavitation, diesel fuel, CFD, real size nozzle, mass flow rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
563 Preventive Measures after Needle-Stick Injuries and Association with Health Locus of Control Beliefs in Medical Students

Authors: M. Karbakhsh, M. Shamseddini Motlagh, M. Khansari

Abstract:

The purpose of this research was to demonstrate prevalence of post-exposure preventive measures (PEP) after needlestick injuries and its relationship with locus of control beliefs in a sample of medical students. In this cross-sectional study, 300 medical students with history of having experienced needle stick injuries (NSI) for at least once filled in a questionnaire to determine if they perceived themselves to be responsible and effective in preventing blood born infections after NSI. About 38% of students did not seek any professional consult or PEP after NSI due to lack of enough time or access, anxiety about tests results, belief in uselessness of followup and not being able to change destiny. These 114 students were not different from others regarding their scores on NSI specific scale of locus of health control. Thus, the potentiality of NSI locus of control beliefs in predicting PEP was not seen in this study.

Keywords: health care workers, locus of health control, needle stick injuries, post-exposure prevention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
562 New SUZ-4 Zeolite Membrane from Sol-Gel Technique

Authors: P. Worathanakul, P. Kongkachuichay

Abstract:

A new SUZ-4 zeolite membrane with tetraethlyammonium hydroxide as the template was fabricated on mullite tube via hydrothermal sol-gel synthesis in a rotating autoclave reactor. The suitable synthesis condition was SiO2:Al2O3 ratio of 21.2 for 4 days at 155 °C crystallization under autogenous pressure. The obtained SUZ-4 possessed a high BET surface area of 396.4 m2/g, total pore volume at 2.611 cm3/g, and narrow pore size distribution with 97 nm mean diameter and 760 nm long of needle crystal shape. The SUZ-4 layer obtained from seeding crystallization was thicker than that of without seeds or in situ crystallization.

Keywords: Membrane, seeding, sol-gel, SUZ-4 Zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
561 Effect of Core Puncture Diameter on Bio-Char Kiln Efficiency

Authors: W. Intagun, T. Khamdaeng, P. Prom-ngarm, N. Panyoyai

Abstract:

Biochar has been used as a soil amendment since it has high porous structure and has proper nutrients and chemical properties for plants. Product yields produced from biochar kiln are dependent on process parameters and kiln types used. The objective of this research is to investigate the effect of core puncture diameter on biochar kiln efficiency, i.e., yields of biochar and produced gas. Corncobs were used as raw material to produce biochar. Briquettes from agricultural wastes were used as fuel. Each treatment was performed by changing the core puncture diameter. From the experiment, it is revealed that the yield of biochar at the core puncture diameter of 3.18 mm, 4.76 mm, and 6.35 mm was 10.62 wt. %, 24.12 wt. %, and 12.24 wt. %, of total solid yields, respectively. The yield of produced gas increased with increasing the core puncture diameter. The maximum percentage by weight of the yield of produced gas was 81.53 wt. % which was found at the core puncture diameter of 6.35 mm. The core puncture diameter was furthermore found to affect the temperature distribution inside the kiln and its thermal efficiency. In conclusion, the high efficient biochar kiln can be designed and constructed by using the proper core puncture diameter.

Keywords: Anila stove, biochar, soil conditioning materials, temperature distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
560 Effect of Sewing Speed on the Physical Properties of Firefighter Sewing Threads

Authors: Adnan Mazari, Engin Akcagun, Antonin Havelka, Funda Buyuk Mazari, Pavel Kejzlar

Abstract:

This article experimentally investigates various physical properties of special fire retardant sewing threads under different sewing speeds. The aramid threads are common for sewing the fire-fighter clothing due to high strength and high melting temperature. 3 types of aramid threads with different linear densities are used for sewing at different speed of 2000 to 4000 r/min. The needle temperature is measured at different speeds of sewing and tensile properties of threads are measured before and after the sewing process respectively. The results shows that the friction and abrasion during the sewing process causes a significant loss to the tensile properties of the threads and needle temperature rises to nearly 300oC at 4000 r/min of machine speed. The Scanning electron microscope images are taken before and after the sewing process and shows no melting spots but significant damage to the yarn. It is also found that machine speed of 2000r/min is ideal for sewing firefighter clothing for higher tensile properties and production.

Keywords: Kevlar, needle temperature, Nomex, sewing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
559 The Method of Evaluation Artery Diameter from Ultrasound Video

Authors: U. Rubins, Z. Marcinkevics, K.Volceka

Abstract:

The cardiovascular system has become the most important subject of clinical research, particularly measurement of arterial blood flow. Therefore correct determination of arterial diameter is crucial. We propose a novel, semi-automatic method for artery lumen detection. The method is based on Gaussian probability function. Usability of our proposed method was assessed by analyzing ultrasound B-mode CFA video sequences acquired from eleven healthy volunteers. The correlation coefficient between the manual and semi-automatic measurement of arterial diameter was 0.996. Our proposed method for detecting artery boundary is novel and accurate enough for the measurement of artery diameter.

Keywords: Ultrasound, boundary detection, artery diameter, curve fitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
558 Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube

Authors: Mohd Hazwan bin Yusof, Hiroshi Katanoda

Abstract:

In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region.

Keywords: Flow visualization, Pressure measurement, Reverse flow, Vortex tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
557 Affect of Viscosity and Droplet Diameter on water-in-oil (w/o) Emulsions: An Experimental Study

Authors: A.N. Ilia Anisa, Abdurahman H.Nour

Abstract:

The influence of viscosity on droplet diameter for water-in-crude oil (w/o) emulsion with two different ratios; 20-80 % and 50-50 % w/o emulsion was examined in the Brookfield Rotational Digital Rheometer. The emulsion was prepared with sorbitan sesquiolate (Span 83) act as emulsifier at varied temperature and stirring speed in rotation per minute (rpm). Results showed that the viscosity of w/o emulsion was strongly augmented by increasing volume of water and decreased the temperature. The changing of viscosity also altered the droplet size distribution. Changing of droplet diameter was depends on the viscosity and the behavior of emulsion either Newtonian or non-Newtonian.

Keywords: Diameter, phase ratio, viscosity, water-in-crude oil(w/o).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7718
556 Investigation of Flow Characteristics on Upstream and Downstream of Orifice Using Computational Fluid Dynamics

Authors: War War Min Swe, Aung Myat Thu, Khin Cho Thet, Zaw Moe Htet, Thuzar Mon

Abstract:

The main parameter of the orifice hole diameter was designed according to the range of throttle diameter ratio which gave the required discharge coefficient. The discharge coefficient is determined by difference diameter ratios. The value of discharge coefficient is 0.958 occurred at throttle diameter ratio 0.5. The throttle hole diameter is 80 mm. The flow analysis is done numerically using ANSYS 17.0, computational fluid dynamics. The flow velocity was analyzed in the upstream and downstream of the orifice meter. The downstream velocity of non-standard orifice meter is 2.5% greater than that of standard orifice meter. The differential pressure is 515.379 Pa in standard orifice.

Keywords: CFD-CFX, discharge coefficients, flow characteristics, inclined.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574
555 Diameter of Zero Divisor Graphs of Finite Direct Product of Lattices
554 Preliminary Study on Determining Stem Diameter Variations of Sympodial Orchid

Authors: N.M Khairi, M.I. Naimah, M.S.B. Shah Rizam, M.T. Nooritawati, Z.A. Husna

Abstract:

Changes in stem diameter of orchid plants were investigated in a control growing climate. Previous studies have focused on stem diameter in relation to plant water on terrestrial plants in order to schedule the irrigation. The objective of this work was to evaluate the ability of the strain gauges to capture changes in the epiphytes plant stem. Experiments were carried out by using the sympodial orchid, Dendrobium Sonia in a stressed condition. From the findings, the sensor can detect changes in the plant stem and the result can easily be used as a reference for further studies for the development of a proper watering system.

Keywords: Strain gauge, stem diameter, Dendrobium Sonia, epiphyte, terrestrial

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
553 A Profile of Recent Upsurge of Brucellosis of Veterinary Health Care Workers Engaged in Brucella Vaccination Program in West Bengal, India

Authors: Satadal Das, Parthasarathi Sengupta

Abstract:

With millions of livestock wealth in India including cattle, and buffaloes, the National Animal Disease Control Program targeted a massive Brucella vaccination program. As a part of it in the state of West Bengal Veterinary healthcare assistants participated in the program in 2021. The aim of this study was to elucidate the burden of brucellosis in those healthcare assistants and to pinpoint the main causes of such infection. We contacted the healthcare assistants to find out whether they were infected during the vaccination program. Our findings indicated many Veterinary healthcare assistants who participated in the program developed symptoms and signs suggestive of brucellosis. Laboratory tests indicated many confirmed Brucellosis cases. However, this may not include many asymptomatic cases. Detailed analysis revealed that in most of them there was a history of needle prick injury about a month back during the vaccination program, which was mainly due to ferocious or disturbed animals. Few also complained that they were not properly trained or proper personal protective types of equipment were not provided. All of them were treated in referral hospitals following a standard protocol of the Government Health Department and now they are followed up. Thus we conclude that proper care during the vaccination of animals should be followed, prophylactic treatment for needle prick injuries should be given, and training and supply of personal protective equipment should be monitored.

Keywords: Occupational brucellosis, needle prick injury, brucella vaccination, personal protective equipment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 425
552 Morphology Study of Inverted Planar Heterojunction Perovskite Solar Cells in Sequential Deposition

Authors: Asmat Nawaz, Ali Koray Erdinc, Burak Gultekin, Muhammad Tayyib, Ceylan Zafer, Kaiying Wang, M. Nadeem Akram

Abstract:

In this study, a sequential deposition process is used for the fabrication of PEDOT: PSS based inverted planar perovskite solar cell. A small amount of additive deionized water (DI-H2O) was added into PbI2 + Dimethyl formamide (DMF) precursor solution in order to increase the solubility of PbI2 in DMF, and finally to manipulate the surface morphology of the perovskite films. A morphology transition from needle like structure to hexagonal plates, and then needle-like again has been observed as the DI-H2O was added continuously (0.0 wt% to 3.0wt%). The latter one leads to full surface coverage of the perovskite, which is essential for high performance solar cell.

Keywords: Charge carrier diffusion lengths, methylamonium lead iodide, precursor composition, perovskite solar cell, sequential deposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
551 Optimizing Electrospinning Parameters for Finest Diameter of Nano Fibers

Authors: M. Maleki, M. Latifi, M. Amani-Tehran

Abstract:

Nano fibers produced by electrospinning are of industrial and scientific attention due to their special characteristics such as long length, small diameter and high surface area. Applications of electrospun structures in nanotechnology are included tissue scaffolds, fibers for drug delivery, composite reinforcement, chemical sensing, enzyme immobilization, membrane-based filtration, protective clothing, catalysis, solar cells, electronic devices and others. Many polymer and ceramic precursor nano fibers have been successfully electrospun with diameters in the range from 1 nm to several microns. The process is complex so that fiber diameter is influenced by various material, design and operating parameters. The objective of this work is to apply genetic algorithm on the parameters of electrospinning which have the most significant effect on the nano fiber diameter to determine the optimum parameter values before doing experimental set up. Effective factors including initial polymer concentration, initial jet radius, electrical potential, relaxation time, initial elongation, viscosity and distance between nozzle and collector are considered to determine finest diameter which is selected by user.

Keywords: Electrospinning, genetic algorithm, nano fiber diameter, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
550 Optimization of Electrospinning Parameter by Employing Genetic Algorithm in order to Produce Desired Nanofiber Diameter

Authors: S. Saehana, F. Iskandar, M. Abdullah, Khairurrijal

Abstract:

A numerical simulation of optimization all of electrospinning processing parameters to obtain smallest nanofiber diameter have been performed by employing genetic algorithm (GA). Fitness function in genetic algorithm methods, which was different for each parameter, was determined by simulation approach based on the Reneker’s model. Moreover, others genetic algorithm parameter, namely length of population, crossover and mutation were applied to get the optimum electrospinning processing parameters. In addition, minimum fiber diameter, 32 nm, was achieved from a simulation by applied the optimum parameters of electrospinning. This finding may be useful for process control and prediction of electrospun fiber production. In this paper, it is also compared between predicted parameters with some experimental results.

Keywords: Diameter, Electrospinning, GA, Nanofiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2955
549 Forest Growth Simulation: Tropical Rain Forest Stand Table Projection

Authors: Yasmin Yahya, Roslan Ismail, Samreth Vanna, Khorn Saret

Abstract:

The study on the tree growth for four species groups of commercial timber in Koh Kong province, Cambodia-s tropical rainforest is described. The simulation for these four groups had been successfully developed in the 5-year interval through year-60. Data were obtained from twenty permanent sample plots in the duration of thirteen years. The aim for this study was to develop stand table simulation system of tree growth by the species group. There were five steps involved in the development of the tree growth simulation: aggregate the tree species into meaningful groups by using cluster analysis; allocate the trees in the diameter classes by the species group; observe the diameter movement of the species group. The diameter growth rate, mortality rate and recruitment rate were calculated by using some mathematical formula. Simulation equation had been created by combining those parameters. Result showed the dissimilarity of the diameter growth among species groups.

Keywords: cluster analysis, diameter growth, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
548 Preservation of Carbon Dioxide Clathrate Hydrate Coexisting with Sucrose at Temperatures below the Water Freezing Point under Atmospheric Pressure

Authors: Tadaaki Sato, Ryo Ohmura

Abstract:

This paper reports the influence of sucrose on the preservation of CO2 hydrate crystal samples. The particle diameter of hydrate samples were 1.0 and 5.6-8.0 mm. Mass fraction of sucrose in the sample was 0.16. The samples were stored at the aerated condition under atmospheric pressure and at the temperature of 253 or 258 K. The results indicated that the mass fractions of CO2 hydrate in the samples with sucrose were 0.10 ± 0.03 at the end of 3-week preservation, regardless of temperature and particle diameter. Mass fraction of CO2 hydrate in the samples with sucrose was higher than that of pure CO2 hydrate for 1.0 mm particle diameter, while was lower than that of pure CO2 hydrate for 5.6-8.0 mm particle diameter. Discussion is made on the influence of sucrose on the dissociation of CO2 hydrate and the resulting formation of ice.

Keywords: Clathrate hydrates, Carbon dioxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
547 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: Breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration (FNA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
546 Effect of Rotor to Casing Ratios with Different Rotor Vanes on Performance of Shaft Output of a Vane Type Novel Air Turbine

Authors: Bharat Raj Singh, Onkar Singh

Abstract:

This paper deals with new concept of using compressed atmospheric air as a zero pollution power source for running motorbikes. The motorbike is equipped with an air turbine in place of an internal combustion engine, and transforms the energy of the compressed air into shaft work. The mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine is presented in this paper. The effect of isobaric admission and adiabatic expansion of high pressure air for different rotor to casing diameter ratios with respect to different vane angles (number of vanes) have been considered and analyzed. It is found that the shaft work output is optimum for some typical values of rotor / casing diameter ratios at a particular value of vane angle (no. of vanes). In this study, the maximum power is obtained as 4.5kW - 5.3kW (5.5-6.25 HP) when casing diameter is taken 100 mm, and rotor to casing diameter ratios are kept from 0.65 to 0.55. This value of output is sufficient to run motorbike.

Keywords: zero pollution, compressed air, air turbine, vane angle, rotor / casing diameter ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
545 Fabrication and Characterization of Gelatin Nanofibers Dissolved in Concentrated Acetic Acid

Authors: Kooshina Koosha, Sima Habibi, Azam Talebian

Abstract:

Electrospinning is a simple, versatile and widely accepted technique to produce ultra-fine fibers ranging from nanometer to micron. Recently there has been great interest in developing this technique to produce nanofibers with novel properties and functionalities. The electrospinning field is extremely broad, and consequently there have been many useful reviews discussing various aspects from detailed fiber formation mechanism to the formation of nanofibers and to discussion on a wide range of applications. On the other hand, the focus of this study is quite narrow, highlighting electrospinning parameters. This work will briefly cover the solution and processing parameters (for instance; concentration, solvent type, voltage, flow rate, distance between the collector and the tip of the needle) impacting the morphological characteristics of nanofibers, such as diameter. In this paper, a comprehensive work would be presented on the research of producing nanofibers from natural polymer entitled Gelatin.

Keywords: Electro spinning, solution parameters, process parameters, natural fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
544 Numerical and Experimental Investigations on Jet Impingement Cooling

Authors: Arun Jacob, Leena R., Krishnakumar T.S., Jose Prakash M.

Abstract:

Effective cooling of electronic equipment has emerged as a challenging and constraining problem of the new century. In the present work the feasibility and effectiveness of jet impingement cooling on electronics were investigated numerically and experimentally. Studies have been conducted to see the effect of the geometrical parameters such as jet diameter (D), jet to target spacing (Z) and ratio of jet spacing to jet diameter (Z/D) on the heat transfer characteristics. The values of Reynolds numbers considered are in the range 7000 to 42000. The results obtained from the numerical studies are validated by conducting experiments. From the studies it is found that the optimum value of Z/D ratio is 5. For a given Reynolds number, the Nusselt number increases by about 28% if the diameter of the nozzle is increased from 1mm to 2mm. Correlations are proposed for Nusselt number in terms of Reynolds number and these are valid for air as the cooling medium.

Keywords: CFD, heat transfer coefficient, Nusselt number, ratio of jet diameter to jet spacing (Z/D), Reynolds number, turbulence model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
543 Effect of Jet Diameter on Surface Quenching at Different Spatial Locations

Authors: C. Agrawal, R. Kumar, A. Gupta, B. Chatterjee

Abstract:

An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 C initial temperature. A round water jet of 22 ± 1 oC temperature was injected over the hot surface through straight tube type nozzles of 2.5- 4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000 -24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location.  

Keywords: Hot-Surface, Jet Impingement, Quenching, Stagnation Point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
542 A 3-Year Evaluation Study on Fine Needle Aspiration Cytology and Corresponding Histology

Authors: Amjad Al Shammari, Ashraf Ibrahim, Laila Seada

Abstract:

Background and Objectives: Incidence of thyroid carcinoma has been increasing world-wide. In the present study, we evaluated diagnostic accuracy of Fine needle aspiration (FNA) and its efficiency in early detecting neoplastic lesions of thyroid gland over a 3-year period. Methods: Data have been retrieved from pathology files in King Khalid Hospital. For each patient, age, gender, FNA, site & size of nodule and final histopathologic diagnosis were recorded. Results: Study included 490 cases where 419 of them were female and 71 male. Male to female ratio was 1:6. Mean age was 43 years for males and 38 for females. Cases with confirmed histopathology were 131. In 101/131 (77.1%), concordance was found between FNA and histology. In 30/131 (22.9%), there was discrepancy in diagnosis. Total malignant cases were 43, out of which 14 (32.5%) were true positive and 29 (67.44%) were false negative. No false positive cases could be found in our series. Conclusion: FNA could diagnose benign nodules in all cases, however, in malignant cases, ultrasound findings have to be taken into consideration to avoid missing of a microcarcinoma in the contralateral lobe.

Keywords: FNA, hail, histopathology, thyroid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
541 Effect of Nanoparticle Diameter of Nano-Fluid on Average Nusselt Number in the Chamber

Authors: A. Ghafouri, N. Pourmahmoud, I. Mirzaee

Abstract:

In this numerical study, effects of using Al2O3-water nanofluid on the rate of heat transfer have been investigated. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the nanoparticle diameter 30, 60 and 90 nm and the solid volume fraction 0 to 0.04. Results are presented by average Nusselt number and normalized Nusselt number in different range of φ and D for mixed convection dominated regime. It is found that different heat transfer rate is predicted when the effect of nanoparticle diameter is taken into account.

Keywords: Nano-fluid, nanoparticle diameter, heat transfer enhancement, square enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
540 The Influence of Clayey Pellet Size on Adsorption Efficiency of Metal Ions Removal from Waste Printing Developer

Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Oros B. Ivana, Kecić S. Vesna

Abstract:

The adsorption efficiency of fired clayey pellets of 5 and 8 mm diameter size for Cu(II) and Zn(II) ion removal from a waste printing developer was studied. In order to investigate the influence of contact time, adsorbent mass and pellet size on the adsorption efficiency the batch mode was carried out. Faster uptake of copper ion was obtained with the fired clay pellets of 5 mm diameter size within 30 minutes. The pellets of 8 mm diameter size showed the higher equilibrium time (60 to 75 minutes) for copper and zinc ion. The results pointed out that adsorption efficiency increases with the increase of adsorbent mass. The maximal efficiency is different for Cu(II) and Zn(II) ion due to the pellet size. Therefore, the fired clay pellets of 5 mm diameter size present an effective adsorbent for Cu(II) ion removal (adsorption efficiency is 63.6%), whereas the fired clay pellets of 8 mm diameter size are the best alternative for Zn(II) ion removal (adsorption efficiency is 92.8%) from a waste printing developer.

Keywords: Adsorption efficiency, clayey pellet, metal ions, waste printing developer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
539 The Purification of Waste Printing Developer with the Fixed Bed Adsorption Column

Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Kecić S. Vesna, Oros B. Ivana

Abstract:

The present study investigates the effectiveness of newly designed clayey pellets (fired clay pellets diameter sizes of 5 and 8 mm, and unfired clay pellets with the diameter size of 15 mm) as the beds in the column adsorption process. The adsorption experiments in the batch mode were performed before the column experiment with the purpose to determine the order of adsorbent package in the column which was to be designed in the investigation. The column experiment was performed by using a known mass of the clayey beds and the volume of the waste printing developer, which was purified. The column was filled in the following order: fired clay pellets of the diameter size of 5 mm, fired clay pellets of the diameter size of 8 mm, and unfired clay pellets of the diameter size of 15 mm. The selected order of the adsorbents showed a high removal efficiency for zinc (97.8%) and copper (81.5%) ions. These efficiencies were better than those in the case of the already existing mode adsorption. The obtained experimental data present a good basis for the selection of an appropriate column fill, but further testing is necessary in order to obtain more accurate results.

Keywords: Clay materials, fix bed adsorption column, metal ions, printing developer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
538 Modeling Nanomechanical Behavior of ZnO Nanowires as a Function of Nano-Diameter

Authors: L. Achou, A. Doghmane

Abstract:

Elastic performances, as an essential property of nanowires (NWs), play a significant role in the design and fabrication of modern nanodevices. In this paper, our interest is focused on ZnO NWs to investigate wire diameter (Dwire ≤ 400 nm) effects on elastic properties. The plotted data reveal that a strong size dependence of the elastic constants exists when the wire diameter is smaller than ~ 100 nm. For larger diameters (Dwire > 100 nm), these ones approach their corresponding bulk values. To enrich this study, we make use of the scanning acoustic microscopy simulation technique. The calculation methodology consists of several steps: determination of longitudinal and transverse wave velocities, calculation of refection coefficients, calculation of acoustic signatures and Rayleigh velocity determination. Quantitatively, it was found that changes in ZnO diameters over the ranges 1 nm ≤ Dwire ≤ 100 nm lead to similar exponential variations, for all elastic parameters, of the from: A = a + b exp(-Dwire/c) where a, b, and c are characteristic constants of a given parameter. The developed relation can be used to predict elastic properties of such NW by just knowing its diameter and vice versa.

Keywords: Elastic properties, nanowires, semiconductors, ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
537 Numerical Simulation of Axially Loaded to Failure Large Diameter Bored Pile

Authors: M. Ezzat, Y. Zaghloul, T. Sorour, A. Hefny, M. Eid

Abstract:

Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as recommended by several international codes and foundation design standards. However, loading of this type of piles till achieving apparent failure is practically seldom. In this paper, numerical analyses are carried out to simulate load test of a large diameter bored pile performed at the location of Alzey highway bridge project (Germany). Test results of pile load settlement relationship till failure as well as results of the base and shaft resistances are available. Apparent failure was indicated in this test by the significant increase of the induced settlement during the last load increment applied on the pile head. Measurements of this pile load test are used to assess the quality of the numerical models investigated. Three different material soil models are implemented in the analyses: Mohr coulomb (MC), Soft soil (SS), and Modified Mohr coulomb (MMC). Very good agreement is obtained between the field measured settlement and the calculated settlement using the MMC model. Results of analysis showed also that the MMC constitutive model is superior to MC, and SS models in predicting the ultimate base and shaft resistances of the large diameter bored pile. After calibrating the numerical model, behavior of large diameter bored piles under axial loads is discussed and the formation of the plastic zone around the pile is explored. Results obtained showed that the plastic zone below the base of the pile at failure extended laterally to about four times the pile diameter and vertically to about three times the pile diameter.

Keywords: Ultimate capacity, large diameter bored piles, plastic zone, failure, pile load test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
536 Theoretical Investigations on Different Casing and Rotor Diameters Ratio to Optimize Shaft Output of a Vaned Type Air Turbine

Authors: Bharat Raj Singh, Onkar Singh

Abstract:

This paper details a new concept of using compressed air as a potential zero pollution power source for motorbikes. In place of an internal combustion engine, the motorbike is equipped with an air turbine transforms the energy of the compressed air into shaft work. The mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine is presented in this paper. The effect of isobaric admission and adiabatic expansion of high pressure air for different rotor diameters, casing diameters and ratio of rotor to casing diameters of the turbine have been considered and analyzed. It is concluded that the work output is found optimum for some typical values of rotor / casing diameter ratios. In this study, the maximum power works out to 3.825 kW (5.20 HP) for casing diameter of 200 mm and rotor to casing diameter ratio of 0.65 to 0.60 which is sufficient to run motorbike.

Keywords: zero pollution, compressed air, air turbine, injectionangle, rotor / casing diameter ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659