Optimization of Electrospinning Parameter by Employing Genetic Algorithm in order to Produce Desired Nanofiber Diameter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Optimization of Electrospinning Parameter by Employing Genetic Algorithm in order to Produce Desired Nanofiber Diameter

Authors: S. Saehana, F. Iskandar, M. Abdullah, Khairurrijal

Abstract:

A numerical simulation of optimization all of electrospinning processing parameters to obtain smallest nanofiber diameter have been performed by employing genetic algorithm (GA). Fitness function in genetic algorithm methods, which was different for each parameter, was determined by simulation approach based on the Reneker’s model. Moreover, others genetic algorithm parameter, namely length of population, crossover and mutation were applied to get the optimum electrospinning processing parameters. In addition, minimum fiber diameter, 32 nm, was achieved from a simulation by applied the optimum parameters of electrospinning. This finding may be useful for process control and prediction of electrospun fiber production. In this paper, it is also compared between predicted parameters with some experimental results.

Keywords: Diameter, Electrospinning, GA, Nanofiber.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088746

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2961

References:


[1] S.V. Fridrikh, J.H. Yu, M.P. Brenner, and G.C. Rudledge, “Controlling the fiber diameter during electrospinning,” Phys. Rev. Lett., vol. 90, no. 14, pp. 1–4, April 2003.
[2] M. Ziabari, V. Mottaghitalab, and A.K. Haghi, “A new approach for optimization of electrospun nanofiber formation process,” Korean J. Chem. Eng., vol. 27, no. 1, pp. 340-354, January 2010.
[3] S. Agarwal, J. Wendorff, and A. Greiner, “Use of electrospinning technique for biomedical applications,” Polym., vol. 49, no. 26, pp. 5603-5621, 2008.
[4] S.G. Kumbara, S.P. Nukavarapu, R.James, M.V. Hogana, and C.T. Laurencina, “Recent patents on electrospun biomedical nanostructures: an overview,” Biomed. Eng., vol. 2008, no. 1, pp. 68-78, November 2008.
[5] S. Lee, and S.K. Obendorf, “Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration,” Textile Res. J., vol. 77, no. 9, pp. 696-702, 2007.
[6] Z.-M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Sci. Tech., vol. 63, pp. 2223–2253, April 2003.
[7] A.R. Uribe, L. Arizmendi, M.E.R. Guzmn, S. S. Guzmn, and R.C. Silva, “Electrospun nylon nanofibers as effective reinforcement to polyaniline membranes,” Appl. Mat. Int., vol. 1, no. 11, pp. 2502–2508, 2009.
[8] B. Ding, M. Wang, J. Yu, and G. Sun, “Gas sensors based on electrospun nanofibers,” Sensors, vol. 2009, no. 9, pp. 1609-1624, March 2009.
[9] A. Podgórski, A. Bałazya, L. Gradońa, “Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters,” Chem. Eng. Sci., vol. 61, no. 20, pp. 6804-6815, 2006.
[10] X.H. Qin, and X.Y. Wang, “Filtration properties of electrospinning nanofibers,” J. Appl. Polym. Sci., vol. 102, no. 2, pp. 1285-1290, March 2006.
[11] L. Moroni, R. Lichta, J.d. Boera, J.R.d. Wijna, and C.A.v. Blitterswijka, “Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds,” Biomat., vol. 27, no. 28, pp. 4911-4922, 2006.
[12] S.A. Theron, E. Zussman, and A.L. Yarin, “Experimental investigation of the governing parameters in the electrospinning of polymer solutions,” Polym., vol. 45, pp. 2017–2030, January 2004.
[13] M.M. Munir, F. Iskandar, Khairurrijal, and K. Okuyama, “A constant-current electrospinning system for production of high quality nanofibers,” Rev. Sci. Inst., vol. 79, pp. 1-4, September 2008.
[14] R. Samatham, and K.J. Kim, “Electric current as control variable in the electrospinning process,” Polym. Eng. Sci., vol 46, no. 7, pp. 954–959, 2006.
[15] C.J. Thompson, G.G. Chase, A.L. Yarin, and D.H. Reneker, “Effects of parameters on nanofiber diameter determined from electrospinning model,” Polymer, vol. 48, pp. 6913-6922, September 2007.
[16] M. Maleki, M. Latifi, and M.A. Tehran, “Optimizing electrospinning parameters for finest diameter of nano fibers,” World Ac. Sci. Eng. Tech., vol. 64, pp. 389-392, 2010.
[17] S. Saehana, M. Abdullah, and Khairurrijal, “Simulasi fabrikasi serat nano (nanofiber) dengan metoda pemintalan elektrik (electrospinning): pengaruh jarak nozzle-kolektor”, J. Nanosci. Nanotech., vol. 2, no. 2, pp. 74-82, April 2009.
[18] S. Saehana, M. Abdullah, and Khairurrijal, “Simulasi Geometri Nanoserat Hasil Pemintalan Elektrik,” J. Nanosci. Nanotech., vol. 2, no. 3, pp. 45-49, Agustus 2009.
[19] S. Saehana, m. Abdullah, and Khairurrijal, in Proc. Of 3rd Asian Phys. Symp. , Bandung, July 2009, pp. 147-149.
[20] S. Saehana, M. Abdullah, and Khairurrijal, “The Effect of liquid properties to fiber radius on electrospinning process,” J. Nanosci. Nanotech., vol. 3, no. 1, pp. 15-17, January 2010.
[21] D.H. Reneker, A.L. Yarin, H. Fong, and S.J. Koombhongse, “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning,” J. Appl. Phys., vol. 87, pp. 4531-4547, May 2000.
[22] D.H. Reneker, A.L. Yarin, E. Zussman, and H. Xu, Advances in applied mechanics. London: Elsevier, 2007, ch. 4.
[23] M. Awad, “Optimization RBFNNs parameters using genetic algorithms: applied on function approximation,” Int. J. Comp. Sci. Sec., vol. 4, no. 3, pp. 295-307, 2010.
[24] E. K. Prebys, “The genetic algorithm in computer science,” MIT Undergrad. J. Math., vol. 1, pp. 165-170, 2007.
[25] G.A. Gazonas, “Genetic algorithm optimization of phononic bandgap structures,” Int. J. Sol. Struc., vol. 43, pp. 5851–5866, September 2006.
[26] E. Yang, H. Xiang, D. Gu, and Z. Zhang, ”A comparative study of genetic algorithm parameters for the inverse problem-based fault diagnosis of liquid rocket propulsion systems,” Int. J. Auto. Comp., vol. 4, no. 3, pp. 255-261, July 2007.
[27] C. Lopez-Pujalte, and V.P.G. Bote, “Order-based fitness functions for genetic algorithms applied to relevance feedback,” J. Am. Soc. Inf. Sci. Tech., vol. 54, no. 2, pp. 152-160, January 2003.
[28] Suyanto, Algoritma genetika dalam matlab. Yogyakarta: Andi Ofset, 2005, ch. 3.
[29] J.S.R. Jang, C.T. Sun, and E. Mizutani, Neuro-fuzzy and softcomputing. London: Prentice Hall International Inc., 1997, ch. 6.
[30] D. Fallahi, M. Rafizadeh, N. Mohammadi, and B. Vahidi, “Effect of applied voltage on surface and volume charge density of the jet in electrospinning of polyacrylonitrile solutions,” Polym. Eng. Sci., vol. 50, pp. 1372–1376, 2010.
[31] T.A. Kowalewsky, S. Blonsky, and S. Barral, “Experiments and modelling of electrospinning process,” Bull. Polish Ac. Sci. Tech. Sci., vol. 53, no. 4, pp. 385-394, 2005.
[32] D.S. Katti, K.W. Robinson, F.K. Ko, and C.T. Laurencin, “Bioresorbable nanofiber-based system for wound healing and drug delivery optimation of fabrication parameters,” J. Biomed. Mat. Res. B Appl. Biomat., vol. 70, no. 2, pp. 286-96, 2004.
[33] Q. Li, Z. Jia, Y. Yang, L. Wang, and Z. Guan, “Preparation and properties of poly (vinyl alcohol) nanofibers by electrospinning,” in Proc. Sol. Dielectric, Winchester, July 2007, pp. 215-218.
[34] T. Wang, and S. Kumar, “Electrospinning of polyacrylonitrile nanofibers,” J. Appl. Polym. Sci., vol. 102, no. 2, pp. 1023–1029, July 2006.
[35] M. Stelter, G. Brenn, A.L. Yarin, R.P. Singh, and F. Durst, “Investigation of elongation behavior of polymer solutions by means of an elongational rheometer,” J. Rheol., vol. 46, pp. 507, 2002.
[36] S. Zarkoob, R.K Eby, D.H. Reneker, S.D. Hudson, D. Ertley, and W.W. Adams, “Structure and morphology of electrospun silk nanofibers,” Polym., vol. 45, no. 11, pp. 3973-3977, May 2004.
[37] Y. Liu, J.H. He, J.Y. Yu, and H.M. Zeng, “Controlling numbers and sizes of beads in electrospun nanofibers,” Poly. Int., vol. 57, pp. 632-636, January 2008.
[38] J.M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer, vol. 42, no. 261, January 2001.
[39] L. Wannatong, A. Sirivat, and P. Supaphol, “Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene,” Poly. Int., vol. 53, pp. 1851–1859, July 2004.
[40] A.L. Yarin, S. Koombhongse, and D.H. Reneker, “Taylor cone and jetting from liquid droplets in electrospinning of nanofibers,” J. Appl. Phys., vol. 90, no. 9, pp. 4836-4846, November 2001.
[41] C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, and J.F. Rabolt, “Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process,” Macromol., vol. 37, no. 2, pp. 573–578, January 2004.
[42] S. D. Vrieze, T.V. Camp, A. Nelvig, B. Hagstrom , P. Westbroek, and K.D. Clerck, “The effect of temperature and humidity on electrospinning,” J. Mater. Sci., vol. 44, pp. 1357-1362, January 2009.
[43] C. Mit-uppatham, M. Nithitanakul, and P. Supaphol, “Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter,” Macromol. Chem. Phys., vol. 205, pp. 2327–2338, August 2004.