Modeling Nanomechanical Behavior of ZnO Nanowires as a Function of Nano-Diameter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Modeling Nanomechanical Behavior of ZnO Nanowires as a Function of Nano-Diameter

Authors: L. Achou, A. Doghmane

Abstract:

Elastic performances, as an essential property of nanowires (NWs), play a significant role in the design and fabrication of modern nanodevices. In this paper, our interest is focused on ZnO NWs to investigate wire diameter (Dwire ≤ 400 nm) effects on elastic properties. The plotted data reveal that a strong size dependence of the elastic constants exists when the wire diameter is smaller than ~ 100 nm. For larger diameters (Dwire > 100 nm), these ones approach their corresponding bulk values. To enrich this study, we make use of the scanning acoustic microscopy simulation technique. The calculation methodology consists of several steps: determination of longitudinal and transverse wave velocities, calculation of refection coefficients, calculation of acoustic signatures and Rayleigh velocity determination. Quantitatively, it was found that changes in ZnO diameters over the ranges 1 nm ≤ Dwire ≤ 100 nm lead to similar exponential variations, for all elastic parameters, of the from: A = a + b exp(-Dwire/c) where a, b, and c are characteristic constants of a given parameter. The developed relation can be used to predict elastic properties of such NW by just knowing its diameter and vice versa.

Keywords: Elastic properties, nanowires, semiconductors, ZnO.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1314606

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926

References:


[1] Y. N. Xia, P. Yang, F. Kim and H. Yan, Adv. Mater 15, 353 (2003).
[2] S. Kuchibhatla, A. Karakoti, D. Bera and S. Seal, Prog. Mater. Science 52, 699 (2007).
[3] R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa, Nano Letters 8, 3668–3674 (2008).
[4] G. Simmons and H. Wang, MIT Press, Cambridge, MA, 1971.
[5] A. Asthana, K. Momeni1, A. Prasad, Y. K. Yap and R. S. Yassar, Nanotechnology 22, 265712-1–265712-10 (2011).
[6] A. Briggs, “Advances in Acoustic Microscopy”, Plenum Press, New York, 1995.
[7] A. Briggs, “Acoustic Microscopy”, Clarendon Press, Oxford, 1992.
[8] J. Hu and B. C. Pan, Appl. Physics 105, 034302-1–034302-6 (2009).
[9] G. Stan, C. V. Ciobanu, P. M. Parthangal and R. F. Cook, Nano Letters 7, 3691-3697 (2007).
[10] F. Xu, Q. Qin, A. Mishra, Y. Gu and Y. Zhu, Nano Research 3, 271-280 (2010).
[11] M. R. He, Y. Shi, W. Zhou, J. W. Chen, Y. J. Yan and J. Zhu, Appl. Phys. Letters 95, 091912-1–091912-3 (2009).
[12] M. Doghmane, F. Hadjoub, A. Doghmane and Z. Hadjoub, Mater. Letters 61, 813–816 (2007).
[13] I. Al-Surayhi, A. Doghmane and Z. Hadjoub, Damage and Fracture Mechanics, edited by T. Boukharouba et al., Berlin: Springer Verlag, 2009, pp. 415–424.
[14] D. R. Lide, CRC Handbook of Chemistry and Physics, 73rd Edition, CRC Press, New York, 1992.
[15] C. G. R. Sheppard and T. Wilson, Appl. Phys. Letters 38, 858–859 (1981).
[16] J. Kushibiki and N. Chubachi, IEEE Sonics Ultrason, SU-32, 189–212 (1985).
[17] R. D. Weglein, IEEE Sonics Ultrason, SU-27, 82–86 (1980).
[18] Z. Yu, Rev. Mod. Physics 67, 863–891 (1995).
[19] A. Doghmane, L. Achou and Z. Hadjoub, Journal of Optoelectronics and Advanced Materials 18, 685-690 (2016).
[20] L. Achou, “Nanophysique et nanotechnologies: Effets de la basse dimensionnalité sur les paramètres énergétiques et acoustiques de nanomatériaux”, Editions Universitaires Européennes, ISBN 978-620-2-26540-9.