Search results for: Motion estimators.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 764

Search results for: Motion estimators.

314 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks

Authors: L. Parisi

Abstract:

Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.

Keywords: Kinetics, kinematics, cyclograms, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
313 Obstacle and Collision Avoidance Control Laws of a Swarm of Boids

Authors: Bibhya Sharma, Jito Vanualailai, Jai Raj

Abstract:

This paper proposes a new obstacle and collision avoidance control laws for a three-dimensional swarm of boids. The swarm exhibit collective emergent behaviors whilst avoiding the obstacles in the workspace. While flocking, animals group up in order to do various tasks and even a greater chance of evading predators. A generalized algorithms for attraction to the centroid, inter-individual swarm avoidance and obstacle avoidance is designed in this paper. We present a set of new continuous time-invariant velocity control laws is presented which is formulated via the Lyapunov-based control scheme. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws is demonstrated via computer simulations

 

Keywords: Lyapunov-based Control Scheme, Motion planning, Practical stability, Swarm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
312 Fatigue Life of an Anti-Roll Bar of a Passenger Vehicle

Authors: J. Marzbanrad, A. Yadollahi

Abstract:

In the present paper, Fatigue life assessment of an anti-roll bar component of a passenger vehicle, is investigated by ANSYS 11 software. A stress analysis is also carried out by the finite element technique for the determination of highly stressed regions on the bar. Anti-roll bar is a suspension element used at the front, rear, or at both ends of a car that reduces body roll by resisting any unequal vertical motion between the pair of wheels to which it is connected. As a first stage, fatigue damage models proposed by some well-known references and the corresponding assumptions are discussed and some enhancements are proposed. Then, fracture analysis of an anti-roll bar of an automobile is carried out. The analysed type of the anti-roll bar is especially important as many cases are reported about the fracture after a 100,000 km of travel fatigue and fracture conditions. This paper demonstrates fatigue life of an anti-roll bar and then evaluated by experimental analytically results from other researcher.

Keywords: Anti-roll bar, Fracture, Fatigue life, Random loading

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3512
311 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: Balance control, synchronization control, two wheel inverted pendulum, TWIP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
310 Segmentation of Cardiac Images by the Force Field Driven Speed Term

Authors: Renato Dedic, Madjid Allili, Roger Lecomte, Adbelhamid Benchakroun

Abstract:

The class of geometric deformable models, so-called level sets, has brought tremendous impact to medical imagery. In this paper we present yet another application of level sets to medical imaging. The method we give here will in a way modify the speed term in the standard level sets equation of motion. To do so we build a potential based on the distance and the gradient of the image we study. In turn the potential gives rise to the force field: F~F(x, y) = P ∀(p,q)∈I ((x, y) - (p, q)) |ÔêçI(p,q)| |(x,y)-(p,q)| 2 . The direction and intensity of the force field at each point will determine the direction of the contour-s evolution. The images we used to test our method were produced by the Univesit'e de Sherbrooke-s PET scanners.

Keywords: PET, Cardiac, Heart, Mouse, Geodesic, Geometric, Level Sets, Deformable Models, Edge Detection, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
309 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

Authors: Gayadhar Panda, P. K. Rautraya

Abstract:

Damping of inter-area electromechanical oscillations is one of the major challenges to the electric power system operators. This paper presents Gravitational Search Algorithm (GSA) for tuning Static Synchronous Series Compensator (SSSC) based damping controller to improve power system oscillation stability. In the proposed algorithm, the searcher agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. The effectiveness of the scheme in damping power system oscillations during system faults at different loading conditions is demonstrated through time-domain simulation.

Keywords: FACTS, Damping controller design, Gravitational search algorithm (GSA), Power system oscillations, Single-machine infinite Bus power system, SSSC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
308 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures

Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hamizi Mohand, Hannachi Naceur Eddine

Abstract:

The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method; we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will developed.

Keywords: Seismic performance, Pushover method, characterization of seismic motion, harmfulness of the seismic signal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
307 Review of Surface Electromyogram Signals: Its Analysis and Applications

Authors: Anjana Goen, D. C. Tiwari

Abstract:

Electromyography (EMG) is the study of muscles function through analysis of electrical activity produced from muscles. This electrical activity which is displayed in the form of signal is the result of neuromuscular activation associated with muscle contraction. The most common techniques of EMG signal recording are by using surface and needle/wire electrode where the latter is usually used for interest in deep muscle. This paper will focus on surface electromyogram (SEMG) signal. During SEMG recording, several problems had to been countered such as noise, motion artifact and signal instability. Thus, various signal processing techniques had been implemented to produce a reliable signal for analysis. SEMG signal finds broad application particularly in biomedical field. It had been analyzed and studied for various interests such as neuromuscular disease, enhancement of muscular function and human-computer interface.

Keywords: Evolvable hardware (EHW), Functional Electrical Simulation (FES), Hidden Markov Model (HMM), Hjorth Time Domain (HTD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3472
306 Creating a Virtual Perception for Upper Limb Rehabilitation

Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Arthur Ricardo Deps Miguel Ferreira, John Buchanan, Amarnath Banerjee

Abstract:

This paper describes the development of a virtual-reality system ARWED, which will be used in physical rehabilitation of patients with reduced upper extremity mobility to increase limb Active Range of Motion (AROM). The ARWED system performs a symmetric reflection and real-time mapping of the patient’s healthy limb on to their most affected limb, tapping into the mirror neuron system and facilitating the initial learning phase. Using the ARWED, future experiments will test the extension of the action-observation priming effect linked to the mirror-neuron system on healthy subjects and then stroke patients.

Keywords: Physical rehabilitation, mirror neuron, virtual reality, stroke therapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
305 Interactive PTZ Camera Control System Using Wii Remote and Infrared Sensor Bar

Authors: A. H. W. Goh, Y. S. Yong, C. H. Chan, S. J. Then, L. P. Chu, S. W. Chau, H. W. Hon

Abstract:

This paper proposes an alternative control mechanism for an interactive Pan/Tilt/Zoom (PTZ) camera control system. Instead of using a mouse or a joystick, the proposed mechanism utilizes a Nintendo Wii remote and infrared (IR) sensor bar. The Wii remote has buttons that allows the user to control the movement of a PTZ camera through Bluetooth connectivity. In addition, the Wii remote has a built-in motion sensor that allows the user to give control signals to the PTZ camera through pitch and roll movement. A stationary IR sensor bar, placed at some distance away opposite the Wii remote, enables the detection of yaw movement. In addition, the Wii remote-s built-in IR camera has the ability to detect its spatial position, and thus generates a control signal when the user moves the Wii remote. Some experiments are carried out and their performances are compared with an industry-standard PTZ joystick.

Keywords: Bluetooth, Infrared, Pan/Tilt/Zoom, PTZ Camera, Visual Surveillance, Wii Remote

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
304 Life Time Based Analysis of MAC Protocols of Wireless Ad Hoc Networks in WSN Applications

Authors: R. Alageswaran, S. Selvakumar, P. Neelamegam

Abstract:

Wireless Sensor Networks (WSN) are emerging because of the developments in wireless communication technology and miniaturization of the hardware. WSN consists of a large number of low-cost, low-power, multifunctional sensor nodes to monitor physical conditions, such as temperature, sound, vibration, pressure, motion, etc. The MAC protocol to be used in the sensor networks must be energy efficient and this should aim at conserving the energy during its operation. In this paper, with the focus of analyzing the MAC protocols used in wireless Adhoc networks to WSN, simulation experiments were conducted in Global Mobile Simulator (GloMoSim) software. Number of packets sent by regular nodes, and received by sink node in different deployment strategies, total energy spent, and the network life time have been chosen as the metric for comparison. From the results of simulation, it is evident that the IEEE 802.11 protocol performs better compared to CSMA and MACA protocols.

Keywords: CSMA, DCF, MACA, TelosB

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
303 Continuity Microplating using Image Processing

Authors: Ting-Chao Chen, Yean-Ren Hwang, Jing-Chie Lin

Abstract:

A real time image-guided electroplating system is proposed in this paper. Unlike previous electroplating systems, instead of using the intermittent mode to electroplate 500um long copper specimen, a CCD camera and a motion controller are used to adjust anode-cathode distance to obtain better results. Since the image of the gap distance is highly deteriorated due to complex chemical-electrical operation inside the electrolyte, to determine the gap distance, an image processing algorithm is developed and mainly based on the entropy and energy values. In addition, the color and incidence direction of light source are also discussed to help the image process in this paper. From the experiment results, the specimens created by the proposed system show better structure, better uniformity and better finishing surface compared to those by previous intermittent electroplating setup.

Keywords: Electroplating, image guided, image process, light source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
302 Coupled Galerkin-DQ Approach for the Transient Analysis of Dam-Reservoir Interaction

Authors: S. A. Eftekhari

Abstract:

In this paper, a numerical algorithm using a coupled Galerkin-Differential Quadrature (DQ) method is proposed for the solution of dam-reservoir interaction problem. The governing differential equation of motion of the dam structure is discretized by the Galerkin method and the DQM is used to discretize the fluid domain. The resulting systems of ordinary differential equations are then solved by the Newmark time integration scheme. The mixed scheme combines the simplicity of the Galerkin method and high accuracy and efficiency of the DQ method. Its accuracy and efficiency are demonstrated by comparing the calculated results with those of the existing literature. It is shown that highly accurate results can be obtained using a small number of Galerkin terms and DQM sampling points. The technique presented in this investigation is general and can be used to solve various fluid-structure interaction problems.

Keywords: Dam-reservoir system, Differential quadrature method, Fluid-structure interaction, Galerkin method, Integral quadrature method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
301 Video-Based Tracking of Laparoscopic Instruments Using an Orthogonal Webcams System

Authors: Fernando Pérez, Humberto Sossa, Rigoberto Martínez, Daniel Lorias, Arturo Minor

Abstract:

This paper presents a system for tracking the movement of laparoscopic instruments which is based on an orthogonal system of webcams and video image processing. The movements are captured with two webcams placed orthogonally inside of the physical trainer. On the image, the instruments were detected by using color markers placed on the distal tip of each instrument. The 3D position of the tip of the instrument within the work space was obtained by linear triangulation method. Preliminary results showed linearity and repeatability in the motion tracking with a resolution of 0.616 mm in each axis; the accuracy of the system showed a 3D instrument positioning error of 1.009 ± 0.101 mm. This tool is a portable and low-cost alternative to traditional tracking devices and a trustable method for the objective evaluation of the surgeon’s surgical skills.

Keywords: Laparoscopic Surgery, Orthogonal Vision, Tracking Instruments, Triangulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
300 Robot Motion Planning in Dynamic Environments with Moving Obstacles and Target

Authors: Ellips Masehian, Yalda Katebi

Abstract:

This paper presents a new sensor-based online method for generating collision-free near-optimal paths for mobile robots pursuing a moving target amidst dynamic and static obstacles. At each iteration, first the set of all collision-free directions are calculated using velocity vectors of the robot relative to each obstacle and target, forming the Directive Circle (DC), which is a novel concept. Then, a direction close to the shortest path to the target is selected from feasible directions in DC. The DC prevents the robot from being trapped in deadlocks or local minima. It is assumed that the target's velocity is known, while the speeds of dynamic obstacles, as well as the locations of static obstacles, are to be calculated online. Extensive simulations and experimental results demonstrated the efficiency of the proposed method and its success in coping with complex environments and obstacles.

Keywords: Dynamic Environment, Moving Target, RobotMotion Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2918
299 Achieving Design-Stage Elemental Cost Planning Accuracy: Case Study of New Zealand

Authors: Johnson Adafin, James O. B. Rotimi, Suzanne Wilkinson, Abimbola O. Windapo

Abstract:

An aspect of client expenditure management that requires attention is the level of accuracy achievable in design-stage elemental cost planning. This has been a major concern for construction clients and practitioners in New Zealand (NZ). Pre-tender estimating inaccuracies are significantly influenced by the level of risk information available to estimators. Proper cost planning activities should ensure the production of a project’s likely construction costs (initial and final), and subsequent cost control activities should prevent unpleasant consequences of cost overruns, disputes and project abandonment. If risks were properly identified and priced at the design stage, observed variance between design-stage elemental cost plans (ECPs) and final tender sums (FTS) (initial contract sums) could be reduced. This study investigates the variations between design-stage ECPs and FTS of construction projects, with a view to identifying risk factors that are responsible for the observed variance. Data were sourced through interviews, and risk factors were identified by using thematic analysis. Access was obtained to project files from the records of study participants (consultant quantity surveyors), and document analysis was employed in complementing the responses from the interviews. Study findings revealed the discrepancies between ECPs and FTS in the region of -14% and +16%. It is opined in this study that the identified risk factors were responsible for the variability observed. The values obtained from the analysis would enable greater accuracy in the forecast of FTS by Quantity Surveyors. Further, whilst inherent risks in construction project developments are observed globally, these findings have important ramifications for construction projects by expanding existing knowledge on what is needed for reasonable budgetary performance and successful delivery of construction projects. The findings contribute significantly to the study by providing quantitative confirmation to justify the theoretical conclusions generated in the literature from around the world. This therefore adds to and consolidates existing knowledge.

Keywords: Accuracy, design-stage, elemental cost plan, final tender sum, New Zealand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
298 The Small Scale Effect on Nonlinear Vibration of Single Layer Graphene Sheets

Authors: E. Jomehzadeh, A.R. Saidi

Abstract:

In the present article, nonlinear vibration analysis of single layer graphene sheets is presented and the effect of small length scale is investigated. Using the Hamilton's principle, the three coupled nonlinear equations of motion are obtained based on the von Karman geometrical model and Eringen theory of nonlocal continuum. The solutions of Free nonlinear vibration, based on a one term mode shape, are found for both simply supported and clamped graphene sheets. A complete analysis of graphene sheets with movable as well as immovable in-plane conditions is also carried out. The results obtained herein are compared with those available in the literature for classical isotropic rectangular plates and excellent agreement is seen. Also, the nonlinear effects are presented as functions of geometric properties and small scale parameter.

Keywords: Small scale, Nonlinear vibration, Graphene sheet, Nonlocal continuum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
297 Probabilistic Center Voting Method for Subsequent Object Tracking and Segmentation

Authors: Suryanto, Hyo-Kak Kim, Sang-Hee Park, Dae-Hwan Kim, Sung-Jea Ko

Abstract:

In this paper, we introduce a novel algorithm for object tracking in video sequence. In order to represent the object to be tracked, we propose a spatial color histogram model which encodes both the color distribution and spatial information. The object tracking from frame to frame is accomplished via center voting and back projection method. The center voting method has every pixel in the new frame to cast a vote on whereabouts the object center is. The back projection method segments the object from the background. The segmented foreground provides information on object size and orientation, omitting the need to estimate them separately. We do not put any assumption on camera motion; the proposed algorithm works equally well for object tracking in both static and moving camera videos.

Keywords: center voting, back projection, object tracking, size adaptation, non-stationary camera tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
296 An Empirical Analysis of the Influence of Application Experience on Working Methods of Process Modelers

Authors: A. Nielen, S. Mütze-Niewöhner, C. M. Schlick

Abstract:

In view of growing competition in the service sector, services are as much in need of modeling, analysis and improvement as business or working processes. Graphical process models are important means to capture process-related know-how for an effective management of the service process. In this contribution, a human performance analysis of process model development paying special attention to model development time and the working method was conducted. It was found that modelers with higher application experience need significantly less time for mental activities than modelers with lower application experience, spend more time on labeling graphical elements, and achieved higher process model quality in terms of activity label quality.

Keywords: Model quality, predetermined motion time system, process modeling, working method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
295 Motion Control of TUAV having Eight Rotors for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for a nontrivial nonlinear eight-rotor helicopter model. This control strategy for chosen model of mini-TUAV has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines in hovering, consequently, fast SA with economy in energy of batteries can be asserted during search-andrescue operations.

Keywords: Flight control, eight-rotor helicopter, situational awareness, tactical unmanned aerial vehicle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
294 Linear Stability of Convection in a Viscoelastic Nanofluid Layer

Authors: Long Jye Sheu

Abstract:

This paper presents a linear stability analysis of natural convection in a horizontal layer of a viscoelastic nanofluid. The Oldroyd B model was utilized to describe the rheological behavior of a viscoelastic nanofluid. The model used for the nanofluid incorporated the effects of Brownian motion and thermophoresis. The onset criterion for stationary and oscillatory convection was derived analytically. The effects of the Deborah number, retardation parameters, concentration Rayleigh number, Prandtl number, and Lewis number on the stability of the system were investigated. Results indicated that there was competition among the processes of thermophoresis, Brownian diffusion, and viscoelasticity which caused oscillatory rather than stationary convection to occur. Oscillatory instability is possible with both bottom- and top-heavy nanoparticle distributions. Regimes of stationary and oscillatory convection for various parameters were derived and are discussed in detail.

Keywords: instability, viscoelastic, nanofluids, oscillatory, Brownian, thermophoresis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752
293 Effect of Fault Depth on Near-Fault Peak Ground Velocity

Authors: Yanyan Yu, Haiping Ding, Pengjun Chen, Yiou Sun

Abstract:

Fault depth is an important parameter to be determined in ground motion simulation, and peak ground velocity (PGV) demonstrates good application prospect. Using numerical simulation method, the variations of distribution and peak value of near-fault PGV with different fault depth were studied in detail, and the reason of some phenomena were discussed. The simulation results show that the distribution characteristics of PGV of fault-parallel (FP) component and fault-normal (FN) component are distinctly different; the value of PGV FN component is much larger than that of FP component. With the increase of fault depth, the distribution region of the FN component strong PGV moves forward along the rupture direction, while the strong PGV zone of FP component becomes gradually far away from the fault trace along the direction perpendicular to the strike. However, no matter FN component or FP component, the strong PGV distribution area and its value are both quickly reduced with increased fault depth. The results above suggest that the fault depth have significant effect on both FN component and FP component of near-fault PGV.

Keywords: Fault depth, near-fault, PGV, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
292 Robustness of Hybrid Learning Acceleration Feedback Control Scheme in Flexible Manipulators

Authors: M. Z Md Zain, M. O. Tokhi, M. S. Alam

Abstract:

This paper describes a practical approach to design and develop a hybrid learning with acceleration feedback control (HLC) scheme for input tracking and end-point vibration suppression of flexible manipulator systems. Initially, a collocated proportionalderivative (PD) control scheme using hub-angle and hub-velocity feedback is developed for control of rigid-body motion of the system. This is then extended to incorporate a further hybrid control scheme of the collocated PD control and iterative learning control with acceleration feedback using genetic algorithms (GAs) to optimize the learning parameters. Experimental results of the response of the manipulator with the control schemes are presented in the time and frequency domains. The performance of the HLC is assessed in terms of input tracking, level of vibration reduction at resonance modes and robustness with various payloads.

Keywords: Flexible manipulator, iterative learning control, vibration suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
291 Dynamic Soil Structure Interaction in Buildings

Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar

Abstract:

Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.

Keywords: Soil-structure interaction, response-spectrum analysis, finite element method, multi-storey buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238
290 Deformation of Water Waves by Geometric Transitions with Power Law Function Distribution

Authors: E. G. Bautista, J. M. Reyes, O. Bautista, J. C. Arcos

Abstract:

In this work, we analyze the deformation of surface waves in shallow flows conditions, propagating in a channel of slowly varying cross-section. Based on a singular perturbation technique, the main purpose is to predict the motion of waves by using a dimensionless formulation of the governing equations, considering that the longitudinal variation of the transversal section obey a power-law distribution. We show that the spatial distribution of the waves in the varying cross-section is a function of a kinematic parameter,κ , and two geometrical parameters εh and w ε . The above spatial behavior of the surface elevation is modeled by an ordinary differential equation. The use of single formulas to model the varying cross sections or transitions considered in this work can be a useful approximation to natural or artificial geometrical configurations.

Keywords: Surface waves, Asymptotic solution, Power law function, Non-dispersive waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
289 Nonlinear Dynamics of Cracked RC Beams under Harmonic Excitation

Authors: Atul Krishna Banik

Abstract:

Nonlinear response behaviour of a cracked RC beam under harmonic excitation is analysed to investigate various instability phenomena like, bifurcation, jump phenomena etc. The nonlinearity of the system arises due to opening and closing of the cracks in the RC beam and is modelled as a cubic polynomial. In order to trace different branches at the bifurcation point on the response curve (amplitude versus frequency of excitation plot), an arc length continuation technique along with the incremental harmonic balance (IHBC) method is employed. The stability of the solution is investigated by the Floquet theory using Hsu-s scheme. The periodic solutions obtained by the IHBC method are compared with these obtained by the numerical integration of the equation of motion. Characteristics of solutions fold bifurcation, jump phenomena and from stable to unstable zones are identified.

Keywords: Incremental harmonic balance, arc-length continuation, bifurcation, jump phenomena.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
288 Turbulence Modeling and Wave-Current Interactions

Authors: A.-C. Bennis, F. Dumas, F. Ardhuin, B. Blanke

Abstract:

The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.

Keywords: Numerical modeling, Rip currents, Turbulence modeling, Wave-current interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
287 Numerical Simulation of a Single Air Bubble Rising in Water with Various Models of Surface Tension Force

Authors: Afshin Ahmadi Nadooshan, Ebrahim Shirani

Abstract:

Different numerical methods are employed and developed for simulating interfacial flows. A large range of applications belong to this group, e.g. two-phase flows of air bubbles in water or water drops in air. In such problems surface tension effects often play a dominant role. In this paper, various models of surface tension force for interfacial flows, the CSF, CSS, PCIL and SGIP models have been applied to simulate the motion of small air bubbles in water and the results were compared and reviewed. It has been pointed out that by using SGIP or PCIL models, we are able to simulate bubble rise and obtain results in close agreement with the experimental data.

Keywords: Volume-of-Fluid, Bubble Rising, SGIP model, CSS model, CSF model, PCIL model, interface, surface tension force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
286 Seismic Behavior of Steel Structure with Buckling- Restrained Braces

Authors: M. Reza Bagerzadeh Karimi, M. Ali Lotfollahi Yaghin, R. Mehdi Nezhad, V. Sadeghi, M. Aghabalaie

Abstract:

One of the main purposes of designing bucklingrestrained braces is the fact that the entire lateral load is wasted by the braces, the entire gravitational load is moved to the foundation through the beams, and the columns can be moved to the foundation. In other words, braces are designed for bearing lateral load. In the implementation of the structure, it should be noted that the implementation of various parts of the structure must be conducted in such a way that the buckling-restrained braces would not bear the gravitational load. Moreover, this type of brace has been investigated under impact loading, and the design goals of designing method (direct motion) are controlled under impact loading. The results of dynamic analysis are shown as the relocation charts of the floors and switch between the floors. Finally, the results are compared with each other.

Keywords: Buckling-Restrained Braced Frame (BRBF), energydissipating, ABAQUS, SAP2000, impact load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
285 Rear Separation in a Rotating Fluid at Moderate Taylor Numbers

Authors: S. Damodaran, T. V. S.Sekhar

Abstract:

The motion of a sphere moving along the axis of a rotating viscous fluid is studied at high Reynolds numbers and moderate values of Taylor number. The Higher Order Compact Scheme is used to solve the governing Navier-Stokes equations. The equations are written in the form of Stream function, Vorticity function and angular velocity which are highly non-linear, coupled and elliptic partial differential equations. The flow is governed by two parameters Reynolds number (Re) and Taylor number (T). For very low values of Re and T, the results agree with the available experimental and theoretical results in the literature. The results are obtained at higher values of Re and moderate values of T and compared with the experimental results. The results are fourth order accurate.

Keywords: Navier_Stokes equations, Taylor number, Reynolds number, Higher order compact scheme, Rotating Fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286